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Resumo 

Este estudo apresenta uma abordagem para estimar velocidades em análises forenses de acidentes de trânsito, combinando o método 

de Monte Carlo com estimativas fotogramétricas baseadas na razão cruzada. Para sua aplicação prática, foi desenvolvido um software 

na linguagem R, utilizando a biblioteca Shiny, que oferece uma interface interativa via WEB. A metodologia foi testada em um estudo 

de caso envolvendo um veículo em escala reduzida, onde as velocidades estimadas foram comparadas às obtidas com o software Amped 

Five, uma referência do mercado, que utiliza fotogrametria bidimensional. A análise estatística, realizada com o teste de Wilcoxon, 

não detectou diferenças significativas entre os métodos (p > 5%), dispondo, assim, a metodologia como uma alternativa viável para 

investigações forenses. 

Palavras-Chave: Razão cruzada complexa, geometria projetiva, análise de incertezas. 

Abstract 

This study presents an approach to estimate speeds in forensic traffic accident analyses, combining the Monte Carlo method with 

photogrammetric estimates based on cross-ratio. For practical application, a new software was developed in the R programming 

language using the Shiny library, providing an interactive web interface. The methodology was tested in a case study involving a 

scaled-down vehicle, where the estimated speeds were compared to those obtained with the Amped Five software, a market reference 

that uses two-dimensional photogrammetry. Statistical analysis, conducted with the Wilcoxon test, did not detect significant differences 

between the methods (p > 5%), thereby suggesting the methodology as a viable alternative for forensic investigations. 

Keywords: Complex cross-ratio, projective geometry, uncertainty analysis.

1. Introduction 

 

Traffic accidents represent a severe global public health 

concern, ranking among the leading causes of death and 

sequelae in the young and economically active population. 

According to Santos and Araujo [1], traffic accidents 

primarily affect young people and constitute a significant 

public health issue in the state of Roraima, Brazil. Zanon 

and Brisotto [2] noted that human factors significantly 

impact the causes and consequences of traffic accidents, 

particularly concerning drivers’ conduct and behavior, 

with a focus on inattention and overconfidence. Massaú 

and Rosa [3] alert that the prevention of traffic accidents 

represents an important act of public health management, 

both by reducing direct expenses in the Brazilian Unified 

Health System (SUS) and by decreasing indirect costs 

related to the social security system, the victims, their 

families and the economic system at large. In a similar 

argument, Ramos, Barreto and Miguel [4] state that 

accident reconstruction plays a fundamental role in 

investigating the causes and dynamics of these events, as 

well as contributing to the prevention of new accidents. 

The technical and methodological proficiency involved 

in accident reconstruction, although initially seemingly 

distant from the social sciences, finds a conceptual bridge 

in the reflections made by Arendt [5] on fundamental 
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human activities and their implications for life in society 

and politics. The author develops a conceptual framework 

to understand the nature and value of these activities, 

arguing that they are essential to comprehend the human 

condition in its entirety.  

In this context, criminalistics, which employs 

reconstruction methods to elucidate the circumstances of 

criminal events, can be seen as an example of Arendtian 

“work”. According to Arendt, work is the activity 

corresponding to the artificiality of human existence, 

producing an “artificial” world of things, distinctly 

different from the natural environment, providing some 

permanence and durability to the futility of mortal life and 

the ephemeral nature of human time. 

Thus, by creating detailed reconstructions of accidents, 

criminalistics engages in this process of manufacturing an 

artificial world that aids in the narrative and 

comprehension of complex events. This Arendtian 

perspective allows considerations on the value and 

meaning of this practice, situating it within a broader 

conceptual framework of fundamental activities that 

condition human existence. 

On the other hand, criminology, with its focus on the 

study of crime, its causes and ways to prevent it, engages 

in the spheres of “labor” and “action”. Through labor, it 

seeks to maintain social life through the prevention and 

comprehension of crime, while action manifests in public 

debate and political and social interventions aimed at 

addressing and preventing crime. 

Criminalistics and criminology are complementary and 

essential in understanding and responding to crime, 

interlinking through the analytic categories proposed by 

Arendt. Applying this vision to the reconstruction of traffic 

accidents highlights the role of forensic sciences in this 

context, where reconstructing an accident using scientific 

methods, such as the Monte Carlo method and cross-ratio, 

would be a paradigmatic example of work in the Arendtian 

sense, resulting not only in the development of a tool that, 

in principle, assists in clarifying the factual truth about the 

event, but also provides information for criminology. 

Operating in the sphere of “action”, criminology seeks to 

understand the root causes of accidents and to formulate 

more effective preventive strategies and public policies. 

Therefore, the synergy between the “work” performed in 

criminalistics and the “action” in criminology, through the 

elucidation of truth, is essential to address the complex 

challenges presented to contemporary society. 

As a segment within the realm of “work”, this article 

presents a method for the reconstruction of traffic 

accidents, exploring the use of the Monte Carlo Method 

(MCM) in conjunction with the concept of cross-ratio, an 

invariant under specific conditions, and projective 

geometry to directly determine vehicle speeds based on 

video recordings. This approach offers an alternative 

method for analyzing such incidents, providing resources 

for the development of prevention strategies and the 

reduction of the negative impacts of traffic accidents on 

public health and on society as a whole. 

The reconstruction of traffic accidents seeks, through 

the evidence present at the scene and physical-

mathematical modeling, to reproduce the sequence of 

events and parameters involved in the collision, such as 

speeds, trajectories, and actions of the drivers. However, 

this process involves various uncertainties associated with 

the stochastic nature of the variables used. To deal with 

those uncertainties, statistical techniques such as the MCM 

can be employed. This technique performs simulations 

based on the stochastic modeling of input variables, 

allowing for the propagation of uncertainties and obtaining 

probability distributions of the parameters of interest in the 

reconstruction [6]. Meanwhile, the cross-ratio 

photogrammetric estimation procedure proposed by Wong 

et al. [7] allows, when applicable, for the determination of 

vehicle speeds directly from video images, without the 

need for external references. 

In this article, we aim to present a software designed to 

assist in the application of the Monte Carlo and cross-ratio 

methods in the task of traffic accident reconstruction. We 

will begin with an exploration of the theoretical 

foundations that underpin the reconstruction process, 

followed by a detailed description of the Monte Carlo 

method, including practical examples of its 

implementation for uncertainty propagation. Subsequently, 

the cross-ratio technique will be examined as a procedure 

for estimating vehicle speed from images. The discussion 

will be complemented by a reduced-scale experiment, 

which will serve to illustrate and evaluate the efficacy of 

the joint application of these techniques, culminating in a 

reflection on future prospects and challenges inherent in 

the field of traffic accident reconstruction.  

 

2. METHODOLOGY 

 

2.1. Cross-ratio 

 

Each image frame captured by a recording device 

constitutes a two-dimensional representation of a three-

dimensional space. Every position in the three-dimensional 

real world that is captured within a frame is mapped to a 

two-dimensional point on the image plane. The mapping, 

or transformation, from three-dimensional space to two-

dimensional space follows the principles of projective 

geometry. Figure 1 illustrates the mapping of a line A’B’AB 

in the three-dimensional real world to a two-dimensional 

space in the image frame, namely line N’M’NM. 

Based on Wong et al. [7], the concept of cross-ratio was 

adopted to establish proportional relationships between 

measurements in a geometric context, facilitating the 

understanding of how dimensions in different spaces or 

systems relate to each other. Cross-ratio is a foundational 
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concept in projective geometry that allows us to compare 

the relationship between four collinear points in such a way 

that this relationship remains invariant under projection. 

 

 

Figure 1. Schematic representation of a projective transformation from 

physical space to a two-dimensional image plane. 

 

Mathematically, given a sequence of four collinear 

points, B’, A’, B and A, the cross-ratio between these points 

is defined as: 

 

𝐶𝑅 (𝐵′, 𝐴′, 𝐵, 𝐴) =
|𝐵′𝐵|

|𝐴′𝐵|

|𝐴′𝐴|

|𝐵′𝐴|
 
   (1) 

 

 

Figure 2. Schematic composition of two frames depicting the straight-

line trajectory of a vehicle over a reference line at two instances, T1 and 

T2, at a constant speed V. 

 

𝐶𝑅(𝐵′, 𝐴′, 𝐵, 𝐴) = 𝐶𝑅(𝑁′, 𝑀′, 𝑁, 𝑀)  (2) 

The cross-ratio provides a method for comparing spatial 

relationships in such a way that they remain consistent 

even when viewed from different perspectives or through 

projective transformations. Figure 2 illustrates a vehicle 

moving along a straight-line trajectory at a uniform 

velocity V from time T1 to time T2. (A’, B’) and (A, B) 

correspond to the positions of the front and rear wheels of 

the vehicle at times T2 and T1, respectively. Here, D is the 

distance traveled by the car and L is the wheelbase distance 

of the car. The cross-ratio of these points can be expressed 

in terms of D and L as follows: 

 

|𝐵′𝐵| = 𝐷     (3) 

|𝐴′𝐵| = 𝐷 − 𝐿     (4) 

|𝐵′𝐴| = 𝐷 + 𝐿     (5) 

|𝐴′𝐴| = 𝐷     (6) 

𝐶𝑅(𝐵′, 𝐴′, 𝐵, 𝐴) =
𝐷

(𝐷−𝐿)

𝐷

(𝐷+𝐿)
=

𝐷2

𝐷2−𝐿2  (7) 

Rearranging and applying the functional form in D, 

representing the distance between A’ and A, we have: 

 

𝐷(𝐴′, 𝐴) = ±√
𝐶𝑅(𝐵′,𝐴′,𝐵,𝐴)

𝐶𝑅(𝐵′,𝐴′,𝐵,𝐴)−1
𝐿2  (8) 

The cross-ratio CR(B’,A’,B,A) is an imaginary 

parameter in the three-dimensional real world, as the two 

pairs of points, B’, A’ and B, A, do not coexist 

simultaneously. However, if a car’s movement is captured 

in a video, which is a sequence of temporally ordered 

images, it becomes possible to extract two image frames at 

T1 and T2 and construct a two-dimensional virtual image 

space. This space contains all the projected corresponding 

points from B’ to A. From this two-dimensional virtual 

image space, the cross-ratio CR(B’,A’,B,A) can be 

indirectly determined. 

Considering that the car was traveling in a straight path, 

the four points in the composite image are collinear. The 

trajectory N’M’NM in the virtual two-dimensional image 

space is the projected line of the straight trajectory B’A’BA 

in the real world. The pixel-to-pixel distances of MM’, 

NM’, MN’ and NN’ can be measured directly from the 

composite image to determine the cross-ratio 

CR(N’,M’,N,M). 

 

2.2.  Determination of vehicle speed 
 

Due to the invariant property of the cross-ratio, the 

value of CR(N'M'NM) in the two-dimensional space of the 

image is equal to that obtained for CR(B’,A’,B,A) in the 

three-dimensional real world, substituting (2) into (8): 

 

𝐷(𝐴′, 𝐴) = ±√
𝐶𝑅(𝑁′,𝑀′,𝑁,𝑀)

𝐶𝑅(𝑁′,𝑀′,𝑁,𝑀)−1
𝐿2  (9) 

 

From Equation (9), the distance traveled by the vehicle 

can be determined if the wheelbase is known. Therefore, 

the average scalar speed (V) between moments T1 and T2, 
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considering the spatial reference points A’ and A, can be 

determined by: 

 

𝑉(𝐴′, 𝐴, 𝑇2, 𝑇1 ) =
𝐷(𝐴′𝐴)

𝑇2−𝑇1
      (10) 

2.3. Generalization to coplanar points 
 

When considering points that are not necessarily 

collinear, such as in the case of a vehicle approaching the 

observer’s point of view, the cross-ratio must be 

formulated using the coordinates of the points in the 

projective plane as complex numbers, known as the 

complex cross-ratio [8]. 

Equations 1 to 9 remain valid when extended to the 

complex domain. However, since the distance D becomes 

a complex number, it becomes necessary to consider its 

norm: 

 

𝐷𝑚𝑒𝑡𝑟𝑖𝑐(𝐴′, 𝐴) = |√
𝑅𝐶(𝑁′,𝑀′,𝑁,𝑀)

𝑅𝐶(𝑁′,𝑀′,𝑁,𝑀)−1
𝐿2|  (11) 

Consequently, Equation 10 is revised to: 

 

𝑉(𝐴′, 𝐴, 𝑇2, 𝑇1 ) =
𝐷𝑚𝑒𝑡𝑟𝑖𝑐(𝐴′𝐴)

𝑇2−𝑇1
      (12) 

These modifications enable the generalization of the 

method to scenarios involving coplanar points, ensuring 

mathematical consistency and applicability in a wider 

range of conditions. 

The software implementation in this work reflected the 

theoretical extension by treating image points as complex 

coordinates and evaluating the complex cross-ratio, using 

its modulus to calculate distance and velocity.  

 

2.4. Monte Carlo method 
 

The Monte Carlo method is widely applied in various 

fields. In physics and chemistry, it is used in simulations of 

particle systems in high-energy physics, solid-state physics 

and nuclear physics [6]. 

In engineering, the method is applied in reliability and 

risk analysis of systems [9,10], radiation transportation 

simulations and dose calculations in medical physics [11] 

and fluid flow and heat transfer simulations [12]. 

In statistics and machine learning, the method is 

employed in parameter and uncertainty estimation in 

statistical models. Its applications include integration with 

Markov chain sampling in Bayesian inference and training 

of artificial neural networks [13, 14]. 

The mathematical foundation of the Monte Carlo 

method involves probability theory, statistics, and random 

sampling. Its core principle is based on the Law of Large 

Numbers, which states that the average of independent and 

identically distributed observations converges to the 

expected value of the underlying distribution. The general 

process of the Monte Carlo method involves the following 

steps: (1) defining a domain of possible inputs for the 

problem; (2) generating random inputs from a probability 

distribution over the domain; (3) performing deterministic 

computations on the random inputs; and (4) aggregating 

the results of the individual computations into a final 

estimate [15]. 

Often, the estimation of vehicle speed through the 

cross-ratio method involves marking points on an image 

combining frames T1 and T2. This process has intrinsic 

errors that can be statistically modeled. Assuming that the 

markings for the centers of each wheel are independent, 

convergent, and homoscedastic, they can be represented by 

bivariate Gaussian probability density functions N(X,Y), 

with X and Y being coordinates of the pixels in columns 

and rows, respectively. 

In this case, these probability density functions and 

temporal markings are used to generate sets of cross-ratios, 

estimates of distance and speed, as well as their confidence 

intervals based on percentiles. 

 

2.5. Evaluation of estimate quality 
 

The assumption that the sample distribution of wheel 

markings adheres to a bivariate normal distribution can be 

evaluated for each wheel using a statistical procedure. The 

Doornik-Hansen test, developed to assess the quality of fit 

of a sample distribution to a bivariate normal distribution, 

is a multivariate extension of the univariate Shapiro-Wilk 

test that combines data transformations with matrix 

decomposition to create a goodness of fit test effective 

against most types of non-normality. It has good power and 

size properties and can be extended to higher dimensions 

[16]. 

Once the markings are validated, the next step is to 

estimate speed using the cross-ratio method. This 

procedure assumes that the markings are collinear, an 

assumption that can be evaluated through orthogonal 

regression, which accounts for random errors in both X and 

Y (Figure 3). 

 

𝑋 = 𝜉 + 𝛿, 𝛿 ∼ 𝑁(0, 𝜎𝛿
2)   (11) 

𝑌 = 𝜂 + 𝜀, 𝜀 ∼ 𝑁(0, 𝜎𝜀
2)   (12) 

𝜂 = 𝛽0 + 𝛽1𝜉,     (13) 

Here, δ and ε are independent random errors. ξ is 

assumed to be a random variable normally distributed with 

mean μ and variance τ2, and independent from both random 

errors. Consequently, X and Y follow a bivariate normal 

distribution with mean and covariance matrix described as 

follows: 
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[𝑋 𝑌] ~𝑁 (
[𝜇 𝛽0 + 𝛽1𝜇 ],

[𝜏2 + 𝜎𝛿
2 𝛽1𝜏2 𝛽1𝜏2 𝛽1

2𝜏2 + 𝜎𝜀
2 ]

)     (14) 

The use of this model, which accounts for errors in both 

variables, offers a more balanced and potentially more 

accurate approach to estimating the relationship between 

pixel coordinates. This reasoning stems from the fact that, 

in the marking process, both variables are subject to 

random variation. 

 

 

Figure 3. Schematic scatter plot of errors, in red, in an orthogonal 

regression for pixels located at reference points on the wheels. 

 

However, it is important to note that the adherence of 

the bivariate distributions for each wheel does not 

guarantee, by itself, that the residuals of the model will also 

conform to this reference model. For this reason, an 

additional procedure was developed to assess the fit of the 

residuals from the orthogonal regression to the normal 

distribution, using the Shapiro-Wilk test. 

The quality of the orthogonal regression fit was 

evaluated by the coefficient of determination (R²) and by 

the Akaike Information Criterion (AIC). 

The coefficient of determination is a statistical measure 

that provides a direct interpretation of the model’s 

effectiveness, indicating the proportion of variance in the 

dependent variable that is predictable based on the 

independent variable. 

 
1 Available at: https://github.com/demusis/fotogrametria. 

The Akaike Information Criterion is a useful measure 

for comparing different statistical models. It gauges each 

model’s relative quality considering both its complexity 

(number of parameters) and its fit to the observed data [17]. 

Based on information theory, AIC directly measures the 

information lost when a model approximates the true 

process. Therefore, models with a lower AIC, and hence 

potentially more parsimonious in terms of complexity, 

would be closer to reality [18]. 

To validate the reference point estimates for wheelbase 

distance, a visual procedure based on the work of Gross 

[19] was developed. In the generated image, the pixel 

shades intersected by the final orthogonal regression line 

were analyzed, enabling the construction of a transect of 

distances along the regression relative to the grayscale 

values. 

The wheels exhibit arrangements of shapes and colors 

in their components that define patterns with distinct 

points. These are prominent in the transects and typically 

define critical points, allowing for the validation of the 

reference coordinates used for measuring wheelbase 

difference, generally established as the center of the 

wheels. 

 

3. RESULTS AND DISCUSSION 

 

3.1. Implementation 
The application was developed using a set of open-

source tools, composed of the programming language R 

[20], within the RStudio integrated development 

environment [21], and the Shiny library [22]. The latter is 

a tool that enables the development of web applications 

based on the Bootstrap framework [23]. The developed 

code is available for downloading in a public repository1. 

Figures 4–8 reproduce the software’s native output, 

generated in a Portuguese (Brazil) environment. The 

Figure 4. Cropped, illustrative screenshot of the application’s data‑entry page and statistical outputs: orthogonal regression, coefficient of 

determination (R²), Akaike Information Criterion (AIC), and Doornik–Hansen normality test results. 
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interface language does not affect the algorithms, 

parameter values, or numerical results; it only reflects the 

locale of the development machine. To preserve fidelity 

and reproducibility, the screenshots are shown exactly as 

produced.  

The application’s interface includes two primary 

workspaces, accessible through a side menu on the left 

(Figure 4). The first workspace, labeled “Coordinates” 

(“Coordenadas”), corresponds to the environment for 

inputting the frame composition to be used as a reference 

in the cross-ratio calculation. In this area, a button has been 

provided for uploading an image containing the frame 

composition intended for analysis. 

Once uploaded, the composition is displayed in the 

central region of the page. If the image’s width in pixels 

exceeds the available area, scroll bars are activated on the 

right and bottom edges, allowing the complete 

visualization of the image. The system waits for the user to 

click on the composition, capturing the coordinates of each 

click and sequentially assigning them to the points of the 

cross-ratio. 

The lower portion of Figure 4 displays key performance 

metrics: the orthogonal‑regression equation, R², AIC, and 

the Doornik–Hansen test results, which evaluate whether 

the residuals follow a bivariate normal distribution (α = 

0.05). A nonsignificant result is shown as ‘NO’ (Not 

Observed) for each wheel—thus ‘NONONONO’ when all 

four wheels pass the test. 

 

 

Figure 5. Example of the adjusted orthogonal regression line with 

reference point markings overlaid on the composition presenting the 

analyzed car at two temporal markings generated by the application. 

 

The Monte Carlo simulation's analytical and 

computational steps started with the system's definition 

through a numerical model. The inputs were the wheel 

markings on the frames for times T1 and T2, time records of 

these frames, and the wheelbase of the analyzed car. The 

outputs, in turn, were the traveled distance and mean scalar 

speed. 

The process involved generating random values 

adhering to a bivariate normal distribution for the wheel 

markings, and the addition of a random error, also 

parametrized, to the temporal markings, followed by the 

assessment of the model over N Monte Carlo cycles. The 

resulting data was summarized with confidence‑interval 

estimates for every output variable, based on positional 

measurements. 

Figure 5 illustrates the procedure: two video frames 

were imported into Amped Five [24], aligned, and overlaid 

so that the vehicle’s position at two distinct instants can be 

viewed simultaneously. The figure also contains a scatter 

plot of the detected wheel‑mark points and the 

orthogonal‑regression line fitted to them. 

The second workspace is designated for setting up the 

simulation parameters needed to estimate motion metrics 

based on the marked reference points. 

The first input field controls the standard deviation (sd), 

of an isotropic Gaussian filter applied to the image prior to 

calculating the gray-tone transect along the orthogonal 

regression (Figure 6). This smoothing procedure reduces 

the influence of local pixel-level noise, producing a 

grayscale profile that is less affected by residual 

inconsistencies. In this case, distinct points associated with 

the centers of the wheels can be observed, validating the 

accuracy of the manually marked reference points. 

 

 

Figure 6. Illustrative grayscale transect ("Tom de cinza") as a function of 

rotated abscissas ("Abscissas rotacionadas"), smoothed using an isotropic 

Gaussian filter (s.d. = 7) for orthogonal regression; red dashed lines mark 

the wheel reference points (A-D). Output generated by the application. 

 

Next, input fields are shown for: timestamps for the 

reference frames, the known reference distance between 

wheel centers, the mean and standard deviation of 

timestamp errors (used to inject uncertainty into the 

simulated timing), the number of Monte Carlo repetitions, 

and the confidence level (1–α) used to compute confidence 

intervals for the mean scalar‑velocity. The corresponding 

distribution of estimates obtained from the simulation is 

summarized in Figure 7. 

 

 

Figure 7. Example of nonparametric histogram with an overlaid box plot 

of mean scalar‑velocity (“Velocidade”) estimates. Dashed red lines mark 
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the 99% confidence interval; the dashed blue line marks the sample mean. 

Output generated by the application. 

 

The simulations of the markings by the MCM, as well 

as the final orthogonal regression, are presented in a graph 

with axes rotated in order to align the regression line 

horizontally (Figure 8). 

 

Figure 8. Illustrative scatter plot of rotated coordinates (“Abscissas 

rotacionadas” × “Ordenadas rotacionadas”), showing point densities from 

the MCM output. Grayscale point density reflects frequency of estimates; 

red labels (A–D) mark the projected centers of gravity for the reference 

points. Output generated by the application. 

 

3.1. Case study 

To conduct the case study, a 1/10 scale Traxxas brand 

electric car, model 86086-4, was used (Figure 9). The 

choice of a scaled-down model was justified by increased 

safety, reduced risks, and lower operational costs. The 

vehicle was equipped with an odometer and real-time 

telemetry features, and its records were used as reference 

values. 

 

 

Figure 9. Side view of the electric vehicle used (Image obtained from the 

manufacturer’s website [25]). 

 

Before the experiment, two chessboard-pattern 

templates, adjusted to the size of an A4 paper sheet, were 

placed on the ground (Figure 10). These templates were 

used for camera calibration and as a reference for 

estimating the distance traveled by the vehicle through 

conventional photogrammetry. 

 

 
2 Available at https://github.com/demusis/calibrador_tf.  

 

Figure 10. Reduced scale of the chessboard template used for 

photogrammetric estimation. The real one has 20x20mm squares. 

 

The vehicle was operated to traverse a straight and flat 

road section at various speeds. A digital camera was set up 

on a tripod, positioned 1.5 meters from the vehicle’s 

trajectory, at a 90° angle. The camera recorded at a rate of 

30 frames per second (Figure 11). 

 

 

Figure 11. Layout of the camera, tripod and chessboard templates. 
 

The estimation of the camera's temporal marking error 

was based on the procedure outlined by SWGDE [26], 

using a Raspberry Pi Pico based device with two LEDs 

(Figure 12). A detailed description of the constructed 

device, its operation, and the developed code are available 

in a public repository2. A total of 19 videos, each 

approximately 10 minutes long, of the device operating 

were recorded by the camera used in the photogrammetric 

experiment. 

To estimate the average error of the temporal markings 

of the video frames recorded by the camera, a 5-minute 

video at 30 fps was recorded, with two LEDs alternating 

their states every 10 seconds. The switching times were 

recorded by the Raspberry Pi Pico in a CSV file and 

matched with the temporal markings of the corresponding 

frames. The average estimated error for the temporal 

markings was 0.881ms/s, with a standard deviation of 

0.287ms/s. The Kolmogorov-Smirnov test did not detect a 

significant difference between the obtained values' 

distribution and the normal distribution (𝑝 = 0.595). A 

histogram obtained through non-parametric bootstrap of 

the sample mean of these data with 10,000 repetitions is 

shown in Figure 13. 
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Figure 12. Device setup used to estimate the average error in the temporal 

markings of the camera used. 

 

The cross-ratio was calculated from 40 experimental 

repetitions, which were used to estimate the mean scalar 

speed using the developed application and Amped FIVE 

software. Scene calibration was performed using 

chessboard pattern templates and known distances to 

define the scale and correct for perspective. Afterwards, the 

vehicle's movement was tracked across the video. The 

application enabled the marking of the vehicle's position 

across multiple frames, while Amped FIVE used the 

vehicle's trajectory and the calibrated scene to calculate 

speed based on the tracked distance and corresponding 

time intervals. 

 

 

Figure 13. Non-parametric Bootstrap histogram of the average error in 

temporal markings of the camera used, with 99% confidence interval 

limits in dashed red and the sample mean in solid green. 

 

Normality of the paired differences between the 

developed application and Amped FIVE results was 

assessed with the Kolmogorov–Smirnov test (p < 0.01), 

which indicated a significant deviation from normality, 

justifying the use of non-parametric methods. Accordingly, 

the two sets of estimates were compared with the Wilcoxon 

signed-rank test, which evaluates whether the median 

difference is zero without assuming normality. The test 

revealed no significative difference between methods 

(p = 0.722). 

The mean absolute error was 0.0225 km/h, and a non-

parametric bootstrap distribution based on 10,000 

resamples is shown in Figure 14. 

 

 

Figure 14. Non-parametric bootstrap histogram showing the difference 

between speed estimates from the developed application and Amped 

FIVE software, with 99% confidence interval limits in dashed red and the 

sample mean in solid green. 

 

4. CONCLUSION 

 

The developed software, by integrating the Monte 

Carlo method (MCM) and the concept of cross-ratio from 

projective geometry, provided a more precise and reliable 

analysis of the parameters involved in traffic accidents. By 

reconstructing the accidents in detail, the software 

contributes, in the Arendtian sense of “work” to the 

elucidation of factual truth. 

Controlled experiments on a reduced scale, using a 1/10 

scale electric car and high-precision cameras, validated the 

effectiveness of the methodology for estimating vehicle 

speeds from videos. The obtained estimates did not show 

statistically significant differences compared to those from 

the Amped FIVE software. 

The cross-ratio has demonstrated its effectiveness as a 

tool within this context, and the integration of the MCM 

improved the analysis, allowing for the stochastic 

modeling of input variables, propagation of uncertainties, 

and providing probability distributions of the parameters of 

interest, resulting in a more robust and reliable analysis. 

Furthermore, the generation of confidence intervals by the 

MCM offers a measure of accuracy essential for forensic 

analyses. 

The application developed in R language using the 

Shiny library provided a user-friendly graphical interface 

and web access, facilitating data entry, processing, and 

result visualization. The functionality for marking points 

on video frames, applying MCM, and visualizing speed 

estimates with associated confidence intervals made the 

process more accessible for forensic professionals. 

The application has proven to be efficient in its 

operation and has the potential to contribute to experts and 

professionals in the field, highlighting the applicability and 

validity of the proposed approach for real traffic accident 

investigations. The integration of the MCM with the cross-

ratio and the developed graphical interface presents a 

promising alternative for the reconstruction of traffic 

accidents. 
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