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Resumo

Este estudo apresenta uma abordagem para estimar velocidades em analises forenses de acidentes de transito, combinando o método
de Monte Carlo com estimativas fotogramétricas baseadas na razao cruzada. Para sua aplicagdo pratica, foi desenvolvido um software
na linguagem R, utilizando a biblioteca Shiny, que oferece uma interface interativa via WEB. A metodologia foi testada em um estudo
de caso envolvendo um veiculo em escala reduzida, onde as velocidades estimadas foram comparadas as obtidas com o software Amped
Five, uma referéncia do mercado, que utiliza fotogrametria bidimensional. A analise estatistica, realizada com o teste de Wilcoxon,
ndo detectou diferencas significativas entre os métodos (p > 5%), dispondo, assim, a metodologia como uma alternativa viavel para
investigagdes forenses.

Palavras-Chave: Razao cruzada complexa, geometria projetiva, analise de incertezas.

Abstract

This study presents an approach to estimate speeds in forensic traffic accident analyses, combining the Monte Carlo method with
photogrammetric estimates based on cross-ratio. For practical application, a new software was developed in the R programming
language using the Shiny library, providing an interactive web interface. The methodology was tested in a case study involving a
scaled-down vehicle, where the estimated speeds were compared to those obtained with the Amped Five software, a market reference
that uses two-dimensional photogrammetry. Statistical analysis, conducted with the Wilcoxon test, did not detect significant differences
between the methods (p > 5%), thereby suggesting the methodology as a viable alternative for forensic investigations.

Keywords: Complex cross-ratio, projective geometry, uncertainty analysis.

1. Introduction

Traffic accidents represent a severe global public health
concern, ranking among the leading causes of death and
sequelae in the young and economically active population.
According to Santos and Araujo [1], traffic accidents
primarily affect young people and constitute a significant
public health issue in the state of Roraima, Brazil. Zanon
and Brisotto [2] noted that human factors significantly
impact the causes and consequences of traffic accidents,
particularly concerning drivers’ conduct and behavior,
with a focus on inattention and overconfidence. Massau
and Rosa [3] alert that the prevention of traffic accidents

represents an important act of public health management,
both by reducing direct expenses in the Brazilian Unified
Health System (SUS) and by decreasing indirect costs
related to the social security system, the victims, their
families and the economic system at large. In a similar
argument, Ramos, Barreto and Miguel [4] state that
accident reconstruction plays a fundamental role in
investigating the causes and dynamics of these events, as
well as contributing to the prevention of new accidents.
The technical and methodological proficiency involved
in accident reconstruction, although initially seemingly
distant from the social sciences, finds a conceptual bridge
in the reflections made by Arendt [5] on fundamental
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human activities and their implications for life in society
and politics. The author develops a conceptual framework
to understand the nature and value of these activities,
arguing that they are essential to comprehend the human
condition in its entirety.

In this context, criminalistics, which employs
reconstruction methods to elucidate the circumstances of
criminal events, can be seen as an example of Arendtian
According to Arendt, work is the activity
corresponding to the artificiality of human existence,
producing an “artificial” world of things, distinctly
different from the natural environment, providing some
permanence and durability to the futility of mortal life and
the ephemeral nature of human time.

Thus, by creating detailed reconstructions of accidents,
criminalistics engages in this process of manufacturing an
artificial that narrative
comprehension of complex events. This
perspective allows considerations on the value and
meaning of this practice, situating it within a broader
conceptual framework of fundamental activities that
condition human existence.

On the other hand, criminology, with its focus on the
study of crime, its causes and ways to prevent it, engages

“WOI‘ ”.

world aids 1in the and

Arendtian

in the spheres of “labor” and “action”. Through labor, it
seeks to maintain social life through the prevention and
comprehension of crime, while action manifests in public
debate and political and social interventions aimed at
addressing and preventing crime.

Criminalistics and criminology are complementary and
essential in understanding and responding to crime,
interlinking through the analytic categories proposed by
Arendt. Applying this vision to the reconstruction of traffic
accidents highlights the role of forensic sciences in this
context, where reconstructing an accident using scientific
methods, such as the Monte Carlo method and cross-ratio,
would be a paradigmatic example of work in the Arendtian
sense, resulting not only in the development of a tool that,
in principle, assists in clarifying the factual truth about the
event, but also provides information for criminology.
Operating in the sphere of “action”, criminology seeks to
understand the root causes of accidents and to formulate
more effective preventive strategies and public policies.
Therefore, the synergy between the “work™ performed in
criminalistics and the “action” in criminology, through the
elucidation of truth, is essential to address the complex
challenges presented to contemporary society.

As a segment within the realm of “work”, this article
presents a method for the reconstruction of traffic
accidents, exploring the use of the Monte Carlo Method
(MCM) in conjunction with the concept of cross-ratio, an
invariant under specific conditions, and projective
geometry to directly determine vehicle speeds based on
video recordings. This approach offers an alternative
method for analyzing such incidents, providing resources

for the development of prevention strategies and the
reduction of the negative impacts of traffic accidents on
public health and on society as a whole.

The reconstruction of traffic accidents seeks, through
the evidence present at the scene and physical-
mathematical modeling, to reproduce the sequence of
events and parameters involved in the collision, such as
speeds, trajectories, and actions of the drivers. However,
this process involves various uncertainties associated with
the stochastic nature of the variables used. To deal with
those uncertainties, statistical techniques such as the MCM
can be employed. This technique performs simulations
based on the stochastic modeling of input variables,
allowing for the propagation of uncertainties and obtaining
probability distributions of the parameters of interest in the
reconstruction  [6]. Meanwhile, the
photogrammetric estimation procedure proposed by Wong
et al. [7] allows, when applicable, for the determination of
vehicle speeds directly from video images, without the
need for external references.

In this article, we aim to present a software designed to
assist in the application of the Monte Carlo and cross-ratio
methods in the task of traffic accident reconstruction. We
will begin with an exploration of the theoretical

cross-ratio

foundations that underpin the reconstruction process,
followed by a detailed description of the Monte Carlo
method, including practical examples of its
implementation for uncertainty propagation. Subsequently,
the cross-ratio technique will be examined as a procedure
for estimating vehicle speed from images. The discussion
will be complemented by a reduced-scale experiment,
which will serve to illustrate and evaluate the efficacy of
the joint application of these techniques, culminating in a
reflection on future prospects and challenges inherent in
the field of traffic accident reconstruction.

2. METHODOLOGY
2.1. Cross-ratio

Each image frame captured by a recording device
constitutes a two-dimensional representation of a three-
dimensional space. Every position in the three-dimensional
real world that is captured within a frame is mapped to a
two-dimensional point on the image plane. The mapping,
or transformation, from three-dimensional space to two-
dimensional space follows the principles of projective
geometry. Figure | illustrates the mapping of a line 4 'B’AB
in the three-dimensional real world to a two-dimensional
space in the image frame, namely line N'M’NM.

Based on Wong et al. [7], the concept of cross-ratio was
adopted to establish proportional relationships between
measurements in a geometric context, facilitating the
understanding of how dimensions in different spaces or
systems relate to each other. Cross-ratio is a foundational
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concept in projective geometry that allows us to compare
the relationship between four collinear points in such a way
that this relationship remains invariant under projection.

Image

Figure 1. Schematic representation of a projective transformation from
physical space to a two-dimensional image plane.

Mathematically, given a sequence of four collinear
points, B’, A°, B and A, the cross-ratio between these points
is defined as:

_ Izl M

CR (B',A', B,A) = o7

Figure 2. Schematic composition of two frames depicting the straight-
line trajectory of a vehicle over a reference line at two instances, 7} and
T, at a constant speed V.

CR(B',A’,B,A) = CR(N',M', N, M) )

The cross-ratio provides a method for comparing spatial
relationships in such a way that they remain consistent
even when viewed from different perspectives or through
projective transformations. Figure 2 illustrates a vehicle
moving along a straight-line trajectory at a uniform
velocity V' from time T to time 7>. (4’, B’) and (4, B)
correspond to the positions of the front and rear wheels of
the vehicle at times 7> and T, respectively. Here, D is the

distance traveled by the car and L is the wheelbase distance
of the car. The cross-ratio of these points can be expressed
in terms of D and L as follows:

|B'B| =D (€)

|A'Bl| =D —L “4)

|IB'A|=D+1L 5)

|A’Al =D (6)
D D D?

CR(B',A',B,A) =

(7

(D-1) (D+L) _ D2-12

Rearranging and applying the functional form in D,
representing the distance between 4’ and 4, we have:

, _ CR(B'A',BA) ;5
D, 4) = i\/CR(B’,A’,B,A)—l ®)
The cross-ratio CR(B’,A’,B,4) 1is an imaginary

parameter in the three-dimensional real world, as the two
pairs of points, B’, A’ and B, A4, do not coexist
simultaneously. However, if a car’s movement is captured
in a video, which is a sequence of temporally ordered
images, it becomes possible to extract two image frames at
T and T, and construct a two-dimensional virtual image
space. This space contains all the projected corresponding
points from B’ to A. From this two-dimensional virtual
image space, the cross-ratio CR(B’,A’,B,A) can be
indirectly determined.

Considering that the car was traveling in a straight path,
the four points in the composite image are collinear. The
trajectory N’M’NM in the virtual two-dimensional image
space is the projected line of the straight trajectory B’A 'BA
in the real world. The pixel-to-pixel distances of MM,
NM’, MN’ and NN’ can be measured directly from the
composite image to determine the cross-ratio
CR(N’,M’,N,M).

2.2. Determination of vehicle speed

Due to the invariant property of the cross-ratio, the
value of CR(N'M'NM) in the two-dimensional space of the
image is equal to that obtained for CR(B’,A’,B,A) in the
three-dimensional real world, substituting (2) into (8):

CR(N'.M',N,M)

D(A', A) = i\/

2
CR(N'.M',N,M)—1 L ©)

From Equation (9), the distance traveled by the vehicle
can be determined if the wheelbase is known. Therefore,
the average scalar speed (V) between moments 7 and 7>,
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considering the spatial reference points 4" and 4, can be
determined by:

D(A'4)
,-T,

V(A’,A, TZ!Tl ) = (10)

2.3. Generalization to coplanar points

When considering points that are not necessarily
collinear, such as in the case of a vehicle approaching the
observer’s point of view, the cross-ratio must be
formulated using the coordinates of the points in the
projective plane as complex numbers, known as the
complex cross-ratio [8].

Equations 1 to 9 remain valid when extended to the
complex domain. However, since the distance D becomes
a complex number, it becomes necessary to consider its
norm:

o _ RC(N'M'NM) .,
Dmetrlc(A ,A) - \/RC(N’,M’,N,M)—lL (11)
Consequently, Equation 10 is revised to:
l Dmetric(A’A)
V(A',AT,T,) =—"——— (12)

T,-T1

These modifications enable the generalization of the
method to scenarios involving coplanar points, ensuring
mathematical consistency and applicability in a wider
range of conditions.

The software implementation in this work reflected the
theoretical extension by treating image points as complex
coordinates and evaluating the complex cross-ratio, using
its modulus to calculate distance and velocity.

2.4. Monte Carlo method

The Monte Carlo method is widely applied in various
fields. In physics and chemistry, it is used in simulations of
particle systems in high-energy physics, solid-state physics
and nuclear physics [6].

In engineering, the method is applied in reliability and
risk analysis of systems [9,10], radiation transportation
simulations and dose calculations in medical physics [11]
and fluid flow and heat transfer simulations [12].

In statistics and machine learning, the method is
employed in parameter and uncertainty estimation in
statistical models. Its applications include integration with
Markov chain sampling in Bayesian inference and training
of artificial neural networks [13, 14].

The mathematical foundation of the Monte Carlo
method involves probability theory, statistics, and random
sampling. Its core principle is based on the Law of Large
Numbers, which states that the average of independent and

identically distributed observations converges to the
expected value of the underlying distribution. The general
process of the Monte Carlo method involves the following
steps: (1) defining a domain of possible inputs for the
problem; (2) generating random inputs from a probability
distribution over the domain; (3) performing deterministic
computations on the random inputs; and (4) aggregating
the results of the individual computations into a final
estimate [15].

Often, the estimation of vehicle speed through the
cross-ratio method involves marking points on an image
combining frames 77 and 73. This process has intrinsic
errors that can be statistically modeled. Assuming that the
markings for the centers of each wheel are independent,
convergent, and homoscedastic, they can be represented by
bivariate Gaussian probability density functions N(X,Y),
with X and Y being coordinates of the pixels in columns
and rows, respectively.

In this case, these probability density functions and
temporal markings are used to generate sets of cross-ratios,
estimates of distance and speed, as well as their confidence
intervals based on percentiles.

2.5. Evaluation of estimate quality

The assumption that the sample distribution of wheel
markings adheres to a bivariate normal distribution can be
evaluated for each wheel using a statistical procedure. The
Doornik-Hansen test, developed to assess the quality of fit
of a sample distribution to a bivariate normal distribution,
is a multivariate extension of the univariate Shapiro-Wilk
test that combines data transformations with matrix
decomposition to create a goodness of fit test effective
against most types of non-normality. It has good power and
size properties and can be extended to higher dimensions
[16].

Once the markings are validated, the next step is to
estimate speed using the cross-ratio method. This
procedure assumes that the markings are collinear, an
assumption that can be evaluated through orthogonal
regression, which accounts for random errors in both X and
Y (Figure 3).

X=¢+6, 6~N(0,05) (11)
Y=n+¢, £~ N(0,02) (12)
n = Bo + Bis, (13)

Here, 8 and & are independent random errors. & is
assumed to be a random variable normally distributed with
mean p and variance 12, and independent from both random
errors. Consequently, X and Y follow a bivariate normal
distribution with mean and covariance matrix described as
follows:

84



C.R. de Musis et al., Rev. Bras. Crimin. 14(3), 81-89, 2025

[uBo + Bru ],

[TZ + 0§ Bi7? By7* BT + 0

[XY]~N ( ) (14)

The use of this model, which accounts for errors in both
variables, offers a more balanced and potentially more
accurate approach to estimating the relationship between
pixel coordinates. This reasoning stems from the fact that,
in the marking process, both variables are subject to
random variation.

Figure 3. Schematic scatter plot of errors, in red, in an orthogonal
regression for pixels located at reference points on the wheels.

However, it is important to note that the adherence of
the bivariate distributions for each wheel does not
guarantee, by itself, that the residuals of the model will also
conform to this reference model. For this reason, an
additional procedure was developed to assess the fit of the
residuals from the orthogonal regression to the normal
distribution, using the Shapiro-Wilk test.

The quality of the orthogonal regression fit was
evaluated by the coefficient of determination (R?) and by
the Akaike Information Criterion (AIC).

The coefficient of determination is a statistical measure
that provides a direct interpretation of the model’s
effectiveness, indicating the proportion of variance in the
dependent variable that is predictable based on the
independent variable.

POLITEC/MT
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Escolha uma Imagem

Selecione...  ¢1-240420155¢

Dimensdes: 719 x 170 , Ponto D , X:
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R2 = 0.99721

AIC = 31.23275

Teste de Doornik-Hansen (por grupo):

Apagar tudo

Equacdo: y = 112.4391 + ( -0.04957 )x

The Akaike Information Criterion is a useful measure
for comparing different statistical models. It gauges each
model’s relative quality considering both its complexity
(number of parameters) and its fit to the observed data [ 17].
Based on information theory, AIC directly measures the
information lost when a model approximates the true
process. Therefore, models with a lower AIC, and hence
potentially more parsimonious in terms of complexity,
would be closer to reality [18].

To validate the reference point estimates for wheelbase
distance, a visual procedure based on the work of Gross
[19] was developed. In the generated image, the pixel
shades intersected by the final orthogonal regression line
were analyzed, enabling the construction of a transect of
distances along the regression relative to the grayscale
values.

The wheels exhibit arrangements of shapes and colors
in their components that define patterns with distinct
points. These are prominent in the transects and typically
define critical points, allowing for the validation of the
reference coordinates used for measuring wheelbase
difference, generally established as the center of the
wheels.

3. RESULTS AND DISCUSSION

3.1. Implementation

The application was developed using a set of open-
source tools, composed of the programming language R
[20], within the RStudio integrated development
environment [21], and the Shiny library [22]. The latter is
a tool that enables the development of web applications
based on the Bootstrap framework [23]. The developed
code is available for downloading in a public repository?.

Figures 4-8 reproduce the software’s native output,
generated in a Portuguese (Brazil) environment. The

, Y: 110

NONONONO

Figure 4. Cropped, illustrative screenshot of the application’s data-entry page and statistical outputs: orthogonal regression, coefficient of
determination (R?), Akaike Information Criterion (AIC), and Doornik—Hansen normality test results.

1 Available at: https://github.com/demusis/fotogrametria.
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interface language does not affect the algorithms,
parameter values, or numerical results; it only reflects the
locale of the development machine. To preserve fidelity
and reproducibility, the screenshots are shown exactly as
produced.

The application’s interface includes two primary
workspaces, accessible through a side menu on the left
(Figure 4). The first workspace, labeled “Coordinates”
(“Coordenadas™), corresponds to the environment for
inputting the frame composition to be used as a reference
in the cross-ratio calculation. In this area, a button has been
provided for uploading an image containing the frame
composition intended for analysis.

Once uploaded, the composition is displayed in the
central region of the page. If the image’s width in pixels
exceeds the available area, scroll bars are activated on the
right and bottom edges, allowing the complete
visualization of the image. The system waits for the user to
click on the composition, capturing the coordinates of each
click and sequentially assigning them to the points of the
cross-ratio.

The lower portion of Figure 4 displays key performance
metrics: the orthogonal-regression equation, R?, AIC, and
the Doornik—Hansen test results, which evaluate whether

the residuals follow a bivariate normal distribution (a =
0.05). A nonsignificant result is shown as ‘NO’ (Not
Observed) for each wheel—thus ‘NONONONO’ when all
four wheels pass the test.

Figure 5. Example of the adjusted orthogonal regression line with
reference point markings overlaid on the composition presenting the
analyzed car at two temporal markings generated by the application.

The Monte Carlo simulation's and
computational steps started with the system's definition
through a numerical model. The inputs were the wheel
markings on the frames for times 7' and 7>, time records of
these frames, and the wheelbase of the analyzed car. The
outputs, in turn, were the traveled distance and mean scalar
speed.

The process involved generating random values
adhering to a bivariate normal distribution for the wheel
markings, and the addition of a random error, also
parametrized, to the temporal markings, followed by the
assessment of the model over N Monte Carlo cycles. The

resulting data was summarized with confidence-interval

analytical

estimates for every output variable, based on positional
measurements.

Figure 5 illustrates the procedure: two video frames
were imported into Amped Five [24], aligned, and overlaid
so that the vehicle’s position at two distinct instants can be

viewed simultaneously. The figure also contains a scatter
plot of the detected wheel-mark points and the
orthogonal-regression line fitted to them.

The second workspace is designated for setting up the
simulation parameters needed to estimate motion metrics
based on the marked reference points.

The first input field controls the standard deviation (sd),
of an isotropic Gaussian filter applied to the image prior to
calculating the gray-tone transect along the orthogonal
regression (Figure 6). This smoothing procedure reduces
the influence of local pixel-level noise, producing a
grayscale profile that is less affected by residual
inconsistencies. In this case, distinct points associated with
the centers of the wheels can be observed, validating the
accuracy of the manually marked reference points.

Tom de cinza
o
=

0 200 400 600
Abscissas rotacionadas

Figure 6. Illustrative grayscale transect ("Tom de cinza") as a function of
rotated abscissas ("Abscissas rotacionadas"), smoothed using an isotropic
Gaussian filter (s.d. = 7) for orthogonal regression; red dashed lines mark
the wheel reference points (A-D). Output generated by the application.

Next, input fields are shown for: timestamps for the
reference frames, the known reference distance between
wheel centers, the mean and standard deviation of
timestamp errors (used to inject uncertainty into the
simulated timing), the number of Monte Carlo repetitions,
and the confidence level (1—a) used to compute confidence
intervals for the mean scalar-velocity. The corresponding
distribution of estimates obtained from the simulation is
summarized in Figure 7.

50 218 292

ccococd

40

Frequéncia

S | -

280 284 288 292
Velocidade (km/h)

Figure 7. Example of nonparametric histogram with an overlaid box plot
of mean scalar-velocity (“Velocidade) estimates. Dashed red lines mark
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the 99% confidence interval; the dashed blue line marks the sample mean.
Output generated by the application.

The simulations of the markings by the MCM, as well
as the final orthogonal regression, are presented in a graph
with axes rotated in order to align the regression line
horizontally (Figure 8).

114

Frequencias
H 100

75

H

Al

I~}
=]
o
ez

R o R

50

25

Ordenadas rotacionadas
1 A At s

110

200 400 800
Abscissas rotacionadas

Figure 8. Illustrative scatter plot of rotated coordinates (“Abscissas
rotacionadas” x “Ordenadas rotacionadas”), showing point densities from
the MCM output. Grayscale point density reflects frequency of estimates;
red labels (A—D) mark the projected centers of gravity for the reference
points. Output generated by the application.

3.1. Case study

To conduct the case study, a 1/10 scale Traxxas brand
electric car, model 86086-4, was used (Figure 9). The
choice of a scaled-down model was justified by increased
safety, reduced risks, and lower operational costs. The
vehicle was equipped with an odometer and real-time
telemetry features, and its records were used as reference
values.

14.94” (380 mm)

23.05” (585 mm)

Figure 9. Side view of the electric vehicle used (Image obtained from the
manufacturer’s website [25]).

Before the experiment, two chessboard-pattern
templates, adjusted to the size of an A4 paper sheet, were
placed on the ground (Figure 10). These templates were
used for camera calibration and as a reference for
estimating the distance traveled by the vehicle through
conventional photogrammetry.

2 Available at https://github.com/demusis/calibrador_tf.

Figure 10. Reduced scale of the chessboard template used for
photogrammetric estimation. The real one has 20x20mm squares.

The vehicle was operated to traverse a straight and flat
road section at various speeds. A digital camera was set up
on a tripod, positioned 1.5 meters from the vehicle’s
trajectory, at a 90° angle. The camera recorded at a rate of
30 frames per second (Figure 11).

Figure 11. Layout of the camera, tripod and chessboard templates.

The estimation of the camera's temporal marking error
was based on the procedure outlined by SWGDE [26],
using a Raspberry Pi Pico based device with two LEDs
(Figure 12). A detailed description of the constructed
device, its operation, and the developed code are available
in a public repository2. A total of 19 videos, each

approximately 10 minutes long, of the device operating
were recorded by the camera used in the photogrammetric
experiment.

To estimate the average error of the temporal markings
of the video frames recorded by the camera, a 5-minute
video at 30 fps was recorded, with two LEDs alternating
their states every 10 seconds. The switching times were
recorded by the Raspberry Pi Pico in a CSV file and
matched with the temporal markings of the corresponding
frames. The average estimated error for the temporal
markings was 0.881ms/s, with a standard deviation of
0.287ms/s. The Kolmogorov-Smirnov test did not detect a
significant difference between the obtained values'
distribution and the normal distribution (p = 0.595). A
histogram obtained through non-parametric bootstrap of
the sample mean of these data with 10,000 repetitions is
shown in Figure 13.

87



C.R. de Musis et al., Rev. Bras. Crimin. 14(3), 81-89, 2025

Figure 12. Device setup used to estimate the average error in the temporal
markings of the camera used.

The cross-ratio was calculated from 40 experimental
repetitions, which were used to estimate the mean scalar
speed using the developed application and Amped FIVE
software. Scene calibration was performed using
chessboard pattern templates and known distances to
define the scale and correct for perspective. Afterwards, the
vehicle's movement was tracked across the video. The
application enabled the marking of the vehicle's position
across multiple frames, while Amped FIVE used the
vehicle's trajectory and the calibrated scene to calculate
speed based on the tracked distance and corresponding
time intervals.

.

Frequencies

BNl ’Wl&ﬁ

Difference between observed and estimated timestamp markings (ms/s)

Figure 13. Non-parametric Bootstrap histogram of the average error in
temporal markings of the camera used, with 99% confidence interval
limits in dashed red and the sample mean in solid green.

Normality of the paired differences between the
developed application and Amped FIVE results was
assessed with the Kolmogorov—Smirnov test (p < 0.01),
which indicated a significant deviation from normality,
justifying the use of non-parametric methods. Accordingly,
the two sets of estimates were compared with the Wilcoxon
signed-rank test, which evaluates whether the median
difference is zero without assuming normality. The test
revealed no significative difference between methods
(p =0.722).

The mean absolute error was 0.0225 km/h, and a non-
parametric bootstrap distribution based on 10,000
resamples is shown in Figure 14.

Frequencies
400
i

.

T s T T
10 05 00 05
Differences between the estimates of the mean scalar velocity (km/h)
estimated by the proposed procedure and by the Amped Five software

Figure 14. Non-parametric bootstrap histogram showing the difference
between speed estimates from the developed application and Amped
FIVE software, with 99% confidence interval limits in dashed red and the
sample mean in solid green.

4. CONCLUSION

The developed software, by integrating the Monte
Carlo method (MCM) and the concept of cross-ratio from
projective geometry, provided a more precise and reliable
analysis of the parameters involved in traffic accidents. By
reconstructing the accidents in detail, the software
contributes, in the Arendtian sense of “work” to the
elucidation of factual truth.

Controlled experiments on a reduced scale, using a 1/10
scale electric car and high-precision cameras, validated the
effectiveness of the methodology for estimating vehicle
speeds from videos. The obtained estimates did not show
statistically significant differences compared to those from
the Amped FIVE software.

The cross-ratio has demonstrated its effectiveness as a
tool within this context, and the integration of the MCM
improved the analysis, allowing for the stochastic
modeling of input variables, propagation of uncertainties,
and providing probability distributions of the parameters of
interest, resulting in a more robust and reliable analysis.
Furthermore, the generation of confidence intervals by the
MCM offers a measure of accuracy essential for forensic
analyses.

The application developed in R language using the
Shiny library provided a user-friendly graphical interface
and web access, facilitating data entry, processing, and
result visualization. The functionality for marking points
on video frames, applying MCM, and visualizing speed
estimates with associated confidence intervals made the
process more accessible for forensic professionals.

The application has proven to be efficient in its
operation and has the potential to contribute to experts and
professionals in the field, highlighting the applicability and
validity of the proposed approach for real traffic accident
investigations. The integration of the MCM with the cross-
ratio and the developed graphical interface presents a
promising alternative for the reconstruction of traffic
accidents.
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