Latent fingerprint revealing material produced from industrial waste


Abstract

The powder method is a quick and easy approach to developing latent fingerprints on porous and non-porous surfaces. Some alternative materials could be used to produce the revealing dust. The present work used waste from the steel industry for producing fingerprint powder. The addition of carbon black intensified the color of the material, and the addition of shellac increased the adhesion of the powder to the print residue. The obtained powder had its efficiency compared with the international reference material (Sirchie Hi-Fi Volcano) for different types of surfaces, and its efficiency was comparable. Besides, the material was donated and used by several scientific police in Brazil. The material here produced was as efficient as the commercial one, with the advantage of being produced from industrial waste, what makes the method affordable and environmentally sustainable.


Literaturhinweise

  1. C. CHAMPOD, C. LENNARD, P. MARGOT, M. STOILOVIC, Fingerprints and Other Ridge Skin Impressions. Christophe Champod,Chris J., CRC Press, New York, 2004.
  2. P. Hazarika, D.A. Russell, Advances in fingerprint analysis, Angew. Chemie - Int. Ed. 51 (2012) 3524–3531. https://doi.org/10.1002/anie.201104313.
  3. D.E. Newton, Forensic Chemistry, Facts On File, Inc., 2007.
  4. J.A. Siegel, Forensic Chemistry, John Wiley & Sons, 2015.
  5. S. Cadd, M. Islam, P. Manson, S. Bleay, Fingerprint composition and aging: A literature review, Sci. Justice 55 (2015) 219–238. https://doi.org/10.1016/j.scijus.2015.02.004.
  6. G.S. Sodhi, J. Kaur, Powder method for detecting latent fingerprints: A review, Forensic Sci. Int. 120 (2001) 172–176. https://doi.org/10.1016/S0379-0738(00)00465-5.
  7. A. Abdollahi, A. Dashti, M. Rahmanidoust, N. Hanaei, Metal-free and ecofriendly photoluminescent nanoparticles for visualization of latent fingerprints, anticounterfeiting, and information encryption, Sensors Actuators B Chem. 372 (2022) 132649. https://doi.org/10.1016/j.snb.2022.132649.
  8. H. Zhou, H. Chen, R. Ma, X. Li, X. Du, M. Zhang, Use of conductive Ti2O3 nanoparticles for optical and electrochemical imaging of latent fingerprints on various substrates, J. Electroanal. Chem. 936 (2023) 117387. https://doi.org/10.1016/j.jelechem.2023.117387.
  9. C. Yuan, M. Li, M. Wang, L. Zhang, Cationic dye-diatomite composites: Novel dusting powders for developing latent fingerprints, Dye. Pigment. 153 (2018) 18–25. https://doi.org/10.1016/j.dyepig.2018.01.055.
  10. D.S. Bhagat, P.B. Chavan, W.B. Gurnule, S.K. Shejul, I. V. Suryawanshi, Efficacy of synthesized azo dye for development of latent fingerprints on Non-porous and wet surfaces, Mater. Today Proc. 29 (2020) 1223–1228. https://doi.org/10.1016/j.matpr.2020.05.480.
  11. R. Fouad, M. Saif, M.M. Mashaly, M. Zekrallah, Synthesis and spectroscopic characterization of fluorescent 3-acetyl-4-hydroxy coumarin for biomedical and latent fingerprint applications, J. Mol. Struct. 1284 (2023) 135421. https://doi.org/10.1016/j.molstruc.2023.135421.
  12. S. Li, L. Wang, Y. Ma, L. Zhu, W. Lin, A multifunctional fluorescent molecule with AIE characteristics for SO2 derivatives detection, fluorescence ink and latent fingerprint imaging, Sensors Actuators B Chem. 371 (2022) 132595. https://doi.org/10.1016/j.snb.2022.132595.
  13. P. Zhang, M. Xue, Z. Lin, H. Yang, C. Zhang, J. Cui, J. Chen, Aptamer functionalization and high-contrast reversible dual-color photoswitching fluorescence of polymeric nanoparticles for latent fingerprints imaging, Sensors Actuators B Chem. 367 (2022) 132049. https://doi.org/10.1016/j.snb.2022.132049.
  14. Z. Wang, J. Huo, X. Luan, S. Sun, G. Ma, Excitation-wavelength-dependent luminescence of Sr3P4O13:Eu3+ amber-emitting microphosphor for fluorescence latent fingerprint visualization, Opt. Laser Technol. 149 (2022) 107763. https://doi.org/10.1016/j.optlastec.2021.107763.
  15. D.K. Williams, C.J. Brown, J. Bruker, Characterization of children’s latent fingerprint residues by infrared microspectroscopy: Forensic implications, Forensic Sci. Int. 206 (2011) 161–165. https://doi.org/10.1016/j.forsciint.2010.07.033.
  16. M.R. Strąkowski, P. Strąkowska, J. Pluciński, Latent fingerprint imaging by spectroscopic optical coherence tomography, Opt. Lasers Eng. 167 (2023). https://doi.org/10.1016/j.optlaseng.2023.107622.
  17. J.N. Pollitt, G. Christofidis, J. Morrissey, J.W. Birkett, Vacuum metal deposition enhancement of friction ridge detail on ballistic materials, Forensic Sci. Int. 316 (2020). https://doi.org/10.1016/j.forsciint.2020.110551.
  18. K.Q. Schulte, F.C. Hewitt, T.E. Manley, A.J. Reed, M. Baniasad, N.C. Albright, M.E. Powals, D.S. LeSassier, A.R. Smith, L. Zhang, L.W. Allen, B.C. Ludolph, K.L. Weber, A.E. Woerner, M.A. Freitas, M.W. Gardner, Fractionation of DNA and protein from individual latent fingerprints for forensic analysis, Forensic Sci. Int. Genet. 50 (2021) 102405. https://doi.org/10.1016/j.fsigen.2020.102405.
  19. K. Nontiapirom, W. Bunakkharasawat, P. Sojikul, N. Panvisavas, Assessment and prevention of forensic DNA contamination in DNA profiling from latent fingerprint, Forensic Sci. Int. Genet. Suppl. Ser. 7 (2019) 546–548. https://doi.org/10.1016/j.fsigss.2019.10.085.
  20. A. al Oleiwi, I. Hussain, A. McWhorter, R. Sutton, R.S.P. King, DNA recovery from latent fingermarks treated with an infrared fluorescent fingerprint powder, Forensic Sci. Int. 277 (2017) e39–e43. https://doi.org/10.1016/j.forsciint.2017.05.008.
  21. C.M. Longo, R.A. Musah, MALDI-mass spectrometry imaging for touch chemistry biometric analysis: Establishment of exposure to nitroaromatic explosives through chemical imaging of latent fingermarks, Forensic Chem. 20 (2020) 100269. https://doi.org/10.1016/j.forc.2020.100269.
  22. K.L. Fowble, R.A. Musah, Simultaneous imaging of latent fingermarks and detection of analytes of forensic relevance by laser ablation direct analysis in real time imaging-mass spectrometry (LADI-MS), Forensic Chem. 15 (2019) 100173. https://doi.org/10.1016/j.forc.2019.100173.
  23. K. Kaplan-Sandquist, M.A. LeBeau, M.L. Miller, Chemical analysis of pharmaceuticals and explosives in fingermarks using matrix-assisted laser desorption ionization/time-of-flight mass spectrometry, Forensic Sci. Int. 235 (2014) 68–77. https://doi.org/10.1016/j.forsciint.2013.11.016.
  24. J.S. Day, H.G.M. Edwards, S.A. Dobrowski, A.M. Voice, The detection of drugs of abuse in fingerprints using Raman spectroscopy I: Latent fingerprints, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc. 60 (2004) 563–568. https://doi.org/10.1016/S1386-1425(03)00263-4.
  25. R. Vadivel, M. Nirmala, K. Anbukumaran, Commonly available, everyday materials as non-conventional powders for the visualization of latent fingerprints, Forensic Chem. 24 (2021) 100339. https://doi.org/10.1016/j.forc.2021.100339.
  26. Richa Rohatgi, A.K. Kapoor, New Visualizing Agents for Developing Latent Fingerprints on Various Porous and Non-Porous Surfaces Using Differ... richa rohatgi, Asian J. Sci. Appl. Technol. 3 (2014) 33–38.
  27. V. Saran, L. Kesharwani, A.K. Gupta, M. Kumar Mishra, COMPARATIVE STUDY OF DIFFERENT NATURAL PRODUCTS FOR THE DEVELOPMENT OF LATENT FINGERPRINTS ON NON POROUS SURFACES Study of Diatom Flora of Kaalesar Ghat of Rapti River at Gorakhpur for Forensic Consideration View project PhD research View project 39 PUBLI, 3 (2015) 9–12. https://www.researchgate.net/publication/306286127.
  28. A. Dhunna, S. Anand, A. Aggarwal, A. Agarwal, P. Verma, U. Singh, New visualization agents to reveal the hidden secrets of latent fingerprints, Egypt. J. Forensic Sci. 8 (2018) 4–9. https://doi.org/10.1186/s41935-018-0063-9.
  29. Z. Shirani, C. Santhosh, J. Iqbal, A. Bhatnagar, Waste Moringa oleifera seed pods as green sorbent for efficient removal of toxic aquatic pollutants, J. Environ. Manage. 227 (2018) 95–106. https://doi.org/10.1016/j.jenvman.2018.08.077.
  30. R.S.P. King, P.M. Hallett, D. Foster, Seeing into the infrared: A novel IR fluorescent fingerprint powder, Forensic Sci. Int. 249 (2015) e21–e26. https://doi.org/10.1016/j.forsciint.2015.01.020.
  31. D. Li, J. Yu, AIEgens-Functionalized Inorganic-Organic Hybrid Materials: Fabrications and Applications, Small 12 (2016) 6478–6494. https://doi.org/10.1002/smll.201601484.
  32. A. Badiye, N. Kapoor, Efficacy of Robin® powder blue for latent fingerprint development on various surfaces, Egypt. J. Forensic Sci. 5 (2015) 166–173. https://doi.org/10.1016/j.ejfs.2015.01.001.
  33. M.P. de C. Filho, Introduçãoà Metalurgia Extrativa e Siderurgia, LTC - Livros Técnicos e Científicos Ltda., 1981.
  34. C.N.R. Amaral, F.N. Feiteira, R.C. Cruz, V.O. Cravo, R.J. Cassella, W.F. Pacheco, Removal of basic violet 3 dye from aqueous media using a steel industry residue as solid phase, J. Environ. Chem. Eng. 4 (2016) 4184–4193. https://doi.org/10.1016/j.jece.2016.09.023.
  35. R. Austin, M. Antonia, B. Stephen, Latent Fingerprint Quality : A Survey of Examiners, J. FORENSIC Identif. 61 (2011) 385–419.
  36. Rudolf Maarten Bolle;, Pankanti;Sharathchandra Umapatirao;, Y.-S. Yao, United States Patent (19), 1999.
  37. Z. Yao, J. Le Bars, C. Charrier, C. Rosenberger, Literature review of fingerprint quality assessment and its evaluation, IET Biometrics 5 (2016) 243–251. https://doi.org/10.1049/iet-bmt.2015.0027.
  38. T. Oblak, R. Haraksim, P. Peer, L. Beslay, Fingermark quality assessment framework with classic and deep learning ensemble models, Knowledge-Based Syst. 250 (2022) 109148. https://doi.org/10.1016/j.knosys.2022.109148.
  39. J.N. Miller, J. C., Miller, Statistics for Analytical Chemistry, 3rd ed., Prentice Hall, 1993.

Creative-Commons-Lizenz
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International. Copyright (c) 2025 Brazilian Journal of Criminalistics

Teilen

Herunterladen

Autor(en)