Purification of cocaine for the training of drug detection dogs by the Bahia Military Police


Abstract

Advance in illicit drug use is one of the main public health problems in the world since the number of users is increasing, mainly in developing countries. Brazil is the largest consumer market for cocaine in South America. Various adulterants and diluents are added to the drug to increase its final volume. Due to their strong olfactory ability, drug detection dogs are used to detect narcotics, however, their training should start with the purest possible cocaine. Thus, this work aimed to develop a methodology for obtaining cocaine with a purity level above 90%. Initially, two methodologies for purification of cocaine samples seized by the military police of Bahia (PM-BA) in the city of Vitória da Conquista-Ba were tested. After purifying the samples using the initially proposed methodologies, the results were analyzed by HPLC-DAD and GC-MS and indicated a maximum purity of 63.54%, much lower than desired. Aiming at increasing the purity of the substance of interest, two complementary methods of purification, recrystallization and classical column chromatography were developed, and the chromatographic process presented a final product with high purity content (98.53 ± 0.12%). Thus, the purification processes developed in this work constitute a viable and effective alternative for supplying samples of cocaine with high purity content to the military police of Bahia, aiming at training sniffer dogs.


Keywords

cocaine purification
sniffer dogs
illicit drugs
HPLC
GC-MS
purificação de cocaína
cães farejadores
drogas ilícitas
HPLC
CG-EM

References

  1. United Nations Office On Drugs And Crime. World drug report, 2020. 2, 1-52. New York, United Nations, 2022.
  2. United Nations Office On Drugs And Crime. World drug report, 2019. 2, 1-80. New York, United Nations, 2019.
  3. L.T.A. Alcântara. Adulterantes encontrados em drogas ilícitas, uma abordagem forense. Acta de Ciências e Saúde, 2, 1-16, 2016.
  4. Brasil. Livreto Informativo Sobre Drogas Psicotrópicas, Centro Brasileiro de Informações sobre Drogas Psicotrópicas São Paulo CEBRID, 36, 2007.
  5. D.R. Silva. Desenvolvimento e validação de metodologia analítica para identificação e quantificação de alcaloides minoritários em amostras de cocaína por cromatografia gasosa com detector de ionização de chama (CG-DIC). Dissertação de Mestrado, departamento de Tecnologia Química e Biológica, Universidade de Brasília, 2016.
  6. O. Kudlacek, et al. Cocaine adulteration. J. Chem. Neuroanat, 83-84, 75–81, 2017.
  7. N.P. Bernardo, M.E.P.B. Siqueira, M.J.N. Paiva, P.P. Maia. Caffeine and Others adulterants in seizures of street cocaine in Brazil. Int. J. Drug Policy 14, 331-334, 2003.
  8. L.M. souza,. Fingerprinting de Cocaína, Um Estudo do Perfil Químico no Estado do Espírito Santo. Dissertação de Mestrado, departamento de Química, Universidade Federal do Espírito Santo, Vitória, 2014.
  9. G. Floriani. Desenvolvimento e validação de método por CLAE para análise de cocaína, seus produtos de degradação e adulterantes. Dissertação de Pós-graduação, departamento de Ciências Farmacêuticas, Universidade Federal do Paraná, Curitiba, 2012.
  10. S. F. Lapachinske, et al. Analysis of cocaine and its adulterants in drugs for international trafficking seized by the Brazilian Federal Police. Forensic Sci Int, 247, 48–53, 2014.
  11. A.S. Santiago, N.E.M.M.M. Melo, Levantamento de dados de adulterantes e diluentes encontrados em amostras como cocaína apreendidas e encaminhadas à sede capital da PEFOCE em 2016. Revista Revinter. 11(3), 2018.
  12. A. Lesniak, M. Walczak, T. Jezierski, M. Sacharczuk, M. Gawkowski, K. Jaszczak. Canine Olfactory Receptor Gene Polymorphism and Its Relation to Odor Detection Performance by Sniffer Dogs. J. of Heredity 99, 518-527, 2008.
  13. Fontoura, J.L.A. Seleção, adestramento e emprego do cão de guerra de dupla aptidão, Câmara Brasileira de Jovens Escritores, Rio de Janeiro. 140, 2015.
  14. J.F. Casale, R.F. Klein. Illicit Production of Cocaine. Forensic Sci Rev. 5(2), 95-107, 1993.
  15. M.M.T. MENEZES. Desenvolvimento de sensores voltamétricos e piezelétricos modificados quimicamente com cucurbiturilas para análises de cocaína em amostras de interesse forense. 2015. 128 p. Tese de doutorado, departamento de química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Ribeirão Preto, 2014.
  16. M.P. Cruz, C.M.F. Andrade, K.O. Silva, E.P. Souza, R. Yatsuda, L.M. Marques, J.P. David, J.M. Napimoga, J.T. Clemente-Napimoga. Antinoceptive and Anti-inflammatory Activities of the Ethanolic Extract, Fractions and Flavones Isolated from Mimosa tenuiflora (Willd.) Poir (Leguminosae). Plos One 11(3), 1-29, 2016.
  17. H. Wagner, S. Bladt. Plant Drug Analysis, A Thin Layer Chromatography Atlas. Springer Berlin, Heidelberg, Alemanha, 3-51, 2009.
  18. G. Floriani, J. C. Gasparetto, R. Pontarolo, A. G. Gonçalves,
  19. Development and validation of an HPLC-DAD method for simultaneous determination of cocaine, benzoic acid, benzoylecgonine and the main adulterants found in products based on cocaine. Forensic Sci. Int. 235, 32-39, 2014.
  20. C. Liu, Z. Hua, X. Meng. Applicability of ultra-high performance liquid chromatography-quadrupole-time of flight mass spectrometry for cocaine profiling. Drug Test Anal. 9(8),1152-1161, 2017.
  21. A.G. Pereira, F.B. D’Avila, P.C.L. Ferreira, et al. Method Development and Validation for Determination of Cocaine, its Main Metabolites and Pyrolytic Products by HPLC–UV–CAD. Chromatographia 79, 179-187, 2016.
  22. A.F. Martins, J.B. dos Santos, B.H. Todeschini, et al. Occurrence of cocaine and metabolites in hospital effluent - A risk evaluation and development of a HPLC method using DLLME. Chemosphere 170, 176-182, 2017.
  23. K. Vinkovic,, N. Galic, M.G. Schmid. Micro-HPLC–UV analysis of cocaine and its adulterants in illicit cocaine samples seized by Austrian police from 2012 to 2017. J. Liq. Chromatogr. Relat. Technol. 41(1), 6-13, 2018.
  24. L.D. Sant'Ana, V.C. de Sousa, F.R. dos Santos, et al. Evaluation of cocaine samples seized in the streets of the state of Rio de Janeiro, Brazil. Quím. Nova 42(4), 379-386, 2019.
  25. D.N. Barreto, M.M.A.C. Ribeiro, J.T.C. Sudo, et al. High-throughput screening of cocaine, adulterants, and diluents in seized samples using capillary electrophoresis with capacitively coupled contactless conductivity detection. Talanta 217, 120987, 2020.

Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2023 Brazilian Journal of Criminalistics

Share

Author(s)