Use of 3D printed platform for GSR quantification using digital image analysis and smartphone


Abstract

For the determination of gunshot residue (GSR) is commonly used adhesive plaster as base to apply the sodium rhodizonate colorimetric test by the police. In this context, this work aims to quantify the GSR deposited in shooter's hand through a 3D printed platform using digital image analysis and smartphone. The methodology is based on the colorimetric test by the formation of the colored Pb-rhodizonate complex, buffered with tartrate solution at pH 2.40 and the quantification is given by the analysis of its digital image in the ImageJ software, which generates histograms containing data relating to the color intensity of each sample. Analytical curves were constructed correlating the analytical signal with GSR in terms of Pb mass. The method was applied in shot tests and proved to be effective after successive cumulative additions of Pb in shooter's hand, which corresponds to 7 consecutive shots of pistol. GSR samples of shots of pistol Caliber .380 showed Pb masses of 2.42μg. Moreover, GSR samples of anti-aircraft howitzer shots showed Pb masses from 1.38μg to 1.49μg. It is expected that the use of the methodology can help in the elucidation of criminal events through a quick and low-cost method.


Riferimenti bibliografici

  1. Anuário de Segurança Pública de 2022, Fórum Brasileiro de Segurança Pública - FBSP (2022).
  2. Forensic Chemistry, By Suzanne Bell, 3rd Edition, CRC press (2022).
  3. R.S. Nesbitt, e colaboradores, Detection of gunshot residue by use of the scanning electron microscope, Journal of Forensic Science: 595-610 (1976).
  4. R.A. Costa, L.C. Motta, C.A. Destefani, R.R.T. Rodrigues, K.S. do Espírito Santo, G.M.F.V. Aquije, R. Boldrini, G.P.B Athayde, M.T.W.D. Carneiro, W. Romão, Gunshot residues (GSR) analysis of clean range ammunition using SEM/EDX, colorimetric teste and ICP-MS: A comparative approach between the analytical techniques, Microchemical Journal, 129: 339-347 (2016).
  5. S. Rasheed, M. Ikram, D. Ahmad, M.N. Abbas, M. Shafique, Advancements in colorimetric and fluorescent-based sensing approaches for point-of-care testing in forensic sample analysis, Microchemical Journal, 206: 111-438 (2024).
  6. L.P. da Silva, L. Rodrigues e Brito, R.B. de Souza, C.F.P.M. Filho, V.B. dos Santos, L. Pinto, Screen-printed electrode modified with bismuth film and chemometric techniques for on-site detection and classification of gunshot residues, Forensic Chemistry, 38: 100-563 (2024).
  7. P. Shrivastava, S.K. Jain, N. Kumar, V.K. Jain, S. Nagpal, Handheld device for rapid detection of lead (Pb2+) in gunshot residue for forensic application, Microchemical Journal, 165: 106-186 (2021).
  8. G. Musile, Y. Agard, L. Wang, E.F. De Palo, B. McCord, F. Tagliaro, Paper-based microfluidic devices: On-site tools for crime scene investigation, Trends in Analytical Chemistry, 143: 116-406 (2021).
  9. A.T. Bruni, J.A. Velho, M.F de Oliveira, Fundamentos de Química Forense – Uma análise prática da química que soluciona crimes, Ed. Millennium 228-243 (2012).
  10. J.C.D. de Freitas, Identificação de assinaturas químicas em resíduos de disparos de arma de fogo em diferentes alvos, Instituto de Pesquisas Energéticas e Nucleares – IPEN/SSP-SP, Dissertação de mestrado, (2010).
  11. A. Duarte, Caracterização Elementar de Resíduos de Disparo de Armas de Fogo Gerados por Munição de Fabricação Brasileira, Universidade Federal do Rio Grande do Sul, Programa de Pós Graduação em Ciência dos Materiais, Tese de Doutorado 31-33 (2014).
  12. R.S. Ledley, High-Speed Automatic Analysis of Biomedical Pictures, New Series, Vol. 146, 3641: 216-223 (1964).
  13. Y. Fan, J. Li, Y. Guo, L. Xie, G. Zhang, Digital image colorimetry on smartphone for chemical analysis: a review, Elsevier p. 4 (2021).
  14. G.M. Fernandes, W.R. Silva, D.N. Barreto, R.S. Lamarca, P.C.F.L. Gomes, J.F. da S. Petruci, A.D. Batista, Novel approaches for colorimetric measurements in analytical chemistry: a review, Anal. Chim. Acta, p.187-203 (2020).
  15. S.K. Kohl, J.D. Landmark, D.F. Stickle, Demonstration of Absorbance Using Digital Color Image Analysis and Colored Solutions, Journal of Chemical Education, Vol. 83, 4, p. 644 (2006).
  16. Schneider, C. A., Rasband, W. S., & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nature Methods, 9, 671-675 (2012).
  17. W. da S. Lyra, V.B. dos Santos, A.G.G. Dionízio, V.L. Martins, L.F. Almeida,E. da N. Gaião, P.H.G.D. Diniz, E.C. da Silva, M.C.U. Araújo, Digital image-based flame emission spectrometry, Vol. 77, p. 1584-1589 (2019).
  18. L.G.F Correia, N.F. Robaina, W.F. Pacheco, Desenvolvimento de metodologia analítica para detecção de resíduos de arma de fogo no corpo humano pela técnica de análise de imagem digital, Universidade Federal Fluminense, Graduação em Química Industrial, Trabalho de Conclusão de Curso (2019).
  19. J.C. Miller, J.N. Miller, Statistics for Analytical Chemistry, 3º Ed. Ellis Horwoord (1993) p. 47-52.
  20. INMETRO – Documento DOQ-CGCRE-008 – Orientação sobre Validação de Métodos Analíticos, Rev. 08 (2020).
  21. S.V.F Castro, A.P. Lima, R.G. Rocha, R.M. Cardoso, R.H.O. Montes, M.H.P. Santana, E.M. Richter, R.A.A. Muñoz, Simultaneous determination of lead and antimony in gunshot residue using a 3D-printed platform working as sampler and sensor, Anal. Chim. Acta 1130 p. 126-136 (2020).

Creative Commons License

Questo lavoro è fornito con la licenza Creative Commons Attribuzione - Non commerciale - Condividi allo stesso modo 4.0 Internazionale.

Copyright (c) 2025 Brazilian Journal of Criminalistics

##plugins.themes.gdAlphaUK.general.share##

##plugins.themes.gdAlphaUK.download##

##plugins.themes.gdAlphaUK.article.Authors##