Eficácia da voltametria cíclica e onda quadrada para detecção de anfetamina e derivados


Resumo

A anfetamina (ANF) e seus derivados tornaram-se amplamente utilizados mundialmente, sendo consumidos por cerca de 36 milhões de indivíduos, de acordo com a UNODC (2023). Por esse motivo, ressalta-se a notoriedade de que métodos analíticos possuam robustez científica, agilidade, baixo custo e precisão. O presente estudo tem como objetivo avaliar a eficiência dos métodos de voltametria cíclica (VC) e voltametria de onda quadrada (VOQ) na resposta eletroquímica de anfetamina e seus derivados. Dessa forma, realizou-se uma revisão sistemática criteriosa utilizando a estratégia PICO e descritores: Cyclic Voltammetry; Square Wave Voltammetry; Voltammetry; Detection; Electrochemical Analysis e Amphetamine, que a partir da aplicação dos critérios estabelecidos resultou na inclusão de sete artigos. Por fim, os estudos analisados comprovam a capacidade das técnicas voltamétricas para determinação de anfetaminas. Além disso, estabelecem parâmetros robustos para seu emprego em contextos analíticos diversos, desde monitoramento clínico até aplicações forenses, sempre com o rigor científico necessário para este tipo de determinação, tornando-se uma alternativa promissora para o cotidiano forense.


Palavras-chave

Psychoactive substances
Electrochemical methods
Forensic chemistry
Sustancias psicoactivas
Métodos electroquímicos
Química forense
Substâncias psicoativas
Métodos eletroquímicos
Química Forense

Referências

  1. Agência Nacional de Vigilância Sanitária (ANVISA). Lista de Medicamentos Controlados. Retirado em 20/05/2024, de https://www.gov.br/anvisa/pt-br/assuntos/medicamentos/controlados/lista/arquivos-controlados/6549json-file-1.
  2. J.W. Lowdon; J.O. De Smet; K. Eersels; B. van Grinsven; T.J. Cleij. A molecularly imprinted polymer-based dye displacement assay for the rapid visual detection of amphetamine in urine. Molecules 25: 5222-5238 (2020).
  3. PubChem. Compound Summary for CID 3007 (Amphetamine). Retirado em 20/05/2024, de https://pubchem.ncbi.nlm.nih.gov/compound/3007.
  4. L.M.A. Melo; L.V. de Faria; T.A. Silva; M.H.P. da Silva; E.M. Richter; R.A.A. Munoz. Combined colorimetric and electrochemical screening method using 3D printed devices: Towards the selective detection of MDMA in forensic samples. Electrochim. Acta 483: 144041-144050 (2024).
  5. N. Milhazes; P. Martins; E. Uriarte; J. Garrido; F. Borges; O. Matos; E.M. Pinto. Electrochemical and spectroscopic characterization of amphetamine-like drugs: Application to the screening of 3,4-methylenedioxymethamphetamine (MDMA) and its synthetic precursors. Anal. Chim. Acta 596: 231-241 (2007).
  6. S. Weibel; L. Weiner; P. Nicastro; R. Prada; F. Hasler; P. Dayer; M. Aubry. Practical considerations for the evaluation and management of Attention Deficit Hyperactivity Disorder (ADHD) in adults. L'encephale 46: 30-40 (2020).
  7. E. Furukawa; M. Bado; P. Tripp; R.A. Moreira; M. Kieling; R.G. Shavitt; E. Bramati. Methylphenidate modifies reward cue responses in adults with ADHD: An fMRI study. Neuropharmacology 162: 107833-107843 (2020).
  8. K.R. Teófilo; M.H.P. da Silva; E.M. Richter; R.A.A. Munoz. Electrochemical detection of 3,4-methylenedioxymethamphetamine (ecstasy) using a boron-doped diamond electrode with differential pulse voltammetry: A simple and fast screening method for forensic analysis. Microchem. J. 157: 105088-105095 (2020).
  9. L.V. de Faria; T.A. Silva; M.H.P. da Silva; E.M. Richter; R.A.A. Munoz. Square-wave voltammetric discrimination of amphetamine-type stimulants MDA and MDMA in real-world forensic samples using 3D-printed carbon electrodes. Electrochim. Acta 429: 141002-141012 (2022).
  10. United Nations Office on Drugs and Crime (UNODC). Relatório Mundial sobre Drogas 2023. Retirado em 20/05/2024, de https://www.unodc.org/lpo-brazil/pt/frontpage/2023/06/relatrio-mundial-sobre-drogas-2023-do-unodc-alerta-para-a-convergncia-de-crises-e-contnua-expanso-dosmercados-de-drogas-ilcitas.html.
  11. A.-M. Dragan; R. Sandulescu; A. Cristea; C. Cristea. Investigating the electrochemical profile of methamphetamine to enable fast on-site detection in forensic analysis. Talanta 255: 124208-124216 (2023).
  12. M. Akhoundian; F. Alirezapour; T. Alizadeh; M. Rahaie. Ultra-trace detection of methamphetamine in biological samples using FFT-square wave voltammetry and nano-sized imprinted polymer/MWCNTs-modified electrode. Talanta 200: 115-123 (2019).
  13. C.D. Lima; R.A.A. Munoz; E.M. Richter; T.A. Silva. A simple and selective screening method for the synthetic cathinone MDPT in forensic samples using carbon nanofiber-modified screen-printed electrodes. Talanta 269: 125375-125383 (2024).
  14. Y. Gao; H. Li; X. Zhang. Detection and adsorption of cathinone drug by magnesium oxide nanostructure: A DFT study. Comput. Theor. Chem. 1207: 113507-113515 (2022).
  15. N.R. Stradiotto; H. Yamanaka; M.V.B. Zanoni. Electrochemical Sensors: A Powerful Tool in Analytical Chemistry, Editora UFSCar, Brazil (2003) 150-180.
  16. L.S. Oliveira; R.M. Takeuchi; A.L. Santos. Voltammetric analysis of cocaine using platinum and glassy carbon electrodes chemically modified with Uranyl Schiff base films. Microchem. J. 110: 374-378 (2013).
  17. S. Ren; J. Li; X. Wang; Y. Zhang. Perspective and application of modified electrode materials in electrochemical voltammetric sensors for drug analysis and detection. Sens. Actuators A Phys. 329: 112821-112830 (2021).
  18. J.P. Smith; J.P. Metters; O.B. Sutcliffe; C.E. Banks. Forensic electrochemistry applied to the detection of new psychoactive substances: Electroanalytical detection of synthetic cathinones and analytical validation in street samples. Anal. Chem. 86: 9985-9992 (2014).
  19. N. Elgrishi; K.J. Rountree; B.D. McCarthy; E.S. Rountree; T.T. Eisenhart; J.L. Dempsey. A practical beginner’s guide to cyclic voltammetry. J. Chem. Educ. 95: 197-206 (2018).
  20. A. Tolun; Z. Altintas. Chemical sensing of food phenolics and antioxidant capacity, Advanced Sensor Technology: Biomedical, Environmental, and Construction Applications, Elsevier, United Kingdom (2023) 593-646. DOI: 10.1016/B978-0-323-90222-9.00004-2.
  21. F. Truta; A.-M. Dragan; R. Sandulescu; C. Cristea. Electrochemical rapid detection of methamphetamine from confiscated samples using a graphene-based printed platform. Sensors 23: 6193-6205 (2023).
  22. Z. Khorablou; F. Shahdost-fard; M. Razmi; M.R. Akhgar. Recent advances in developing optical and electrochemical sensors for analysis of methamphetamine: A review. Chemosphere 278: 130393-130403 (2021).
  23. L.M.A. Melo; L.V. de Faria; T.A. Silva; M.H.P. da Silva; E.M. Richter; R.A.A. Munoz. Combined colorimetric and electrochemical screening method using 3D printed devices: Towards the selective detection of MDMA in forensic samples. Electrochim. Acta 483: 144041-144050 (2024).
  24. H. Donato; M. Donato. Steps for conducting a systematic review. Acta Med. Port. 32: 227-235 (2019).
  25. C.M. da C. Santos; C.A. de M. Pimenta; M.R.C. Nobre. The PICO strategy for constructing research questions and searching for evidence. Rev. Latino-Am. Enferm. 15: 508-511 (2007).
  26. G. Atik; M. Yavuz; S. Timur. Antibody-conjugated electrospun nanofibers for electrochemical detection of methamphetamine. ACS Appl. Mater. Interfaces 15: 24109-24119 (2023).
  27. W. Chang; Y. Li; X. Zhang; L. Wang. An electrochemical aptasensor for methylamphetamine rapid detection by single-on mode based on competition with complementary DNA. Sci. Rep. 14: 9279-9290 (2024).
  28. S. Duan; Y. Li; X. Zhang. A simple polyarginine membrane electrochemical sensor for the determination of MDMA and MDA. Anal. Biochem. 688: 115478-115486 (2024).
  29. J. Narang; N. Chauhan; C.S. Pundir. Hydrothermally synthesized zinc oxide nanorods incorporated on lab-on-paper device for electrochemical detection of recreational drug. Artif. Cells Nanomed. Biotechnol. 46: 1586-1593 (2018).
  30. A.S.M. Steijlen; K. van der Hout; J. van der Velde; M. Odijk. Dual microfluidic sensor system for enriched electrochemical profiling and identification of illicit drugs on-site. Anal. Chem. 96: 590-598 (2024).
  31. F.H. Pilz; P. Kielb. Cyclic voltammetry, square wave voltammetry, or electrochemical impedance spectroscopy? Interrogating electrochemical approaches for the determination of electron transfer rates of immobilized redox proteins. BBA Adv. 4: 100095-100104 (2023).PLIZ
  32. D.P. Masemola; P.G. Ndungu; M. Maaza. Gold nanoparticles modified exfoliated graphite electrode as electrochemical sensor in the determination of psychoactive drug. J. Environ. Sci. Health B 55: 455-461 (2020).
  33. M. Masteri-Farahani; F. Askari. Design and photophysical insights on graphene quantum dots for use as nanosensor in differentiating methamphetamine and morphine in solution. Spectrochim. Acta A 206: 448-453 (2019).
  34. International Conference on Harmonisation (ICH). Q2(R1) – Validation of Analytical Procedures: Text and Methodology, ICH, Switzerland (2005) 1-15.
  35. Eurachem. The Fitness for Purpose of Analytical Methods: A Laboratory Guide to Method Validation and Related Topics, 2nd ed., Eurachem (2014) 1-60.
  36. A. Shrivastava; V.B. Gupta. Methods for the determination of limit of detection and limit of quantitation of the analytical methods. Chronicles Young Sci. 2: 21-25 (2011).
  37. N.M. Brito; E.G. Amaral; J.L. Rodrigues. Validação de Métodos Analíticos: Estratégia e Discussão. Retirado em 20/05/2024, de https://www.scielo.br/j/pesticidas/a/.
  38. Moulahoum H, Ghorbanizamani F. The LOD paradox: When lower isn’t always better in biosensor research and development. Biosensors and Bioelectronics. 15 de novembro de 2024;264:116670.
  39. Rosendo LM, Antunes M, Simão AY, Brinca AT, Catarro G, Pelixo R, et al. Sensors in the Detection of Abused Substances in Forensic Contexts: A Comprehensive Review. Micromachines. dezembro de 2023;14(12):2249.
  40. O.D. Renedo; M.A. Alonso-Lomillo; M.J.A. Martínez. Recent developments in the field of screen-printed electrodes and their applications in environmental analysis. Anal. Chim. Acta 598: 1-17 (2007).
  41. K.C. Honeycurch; J.P. Hart. Screen-printed electrochemical sensors for monitoring metal pollutants. Trends Anal. Chem. 22: 456-469 (2003).
  42. N. Anzar; M. Suleman; M. Kumar. Paper-based electrodes decorated with silver and zinc oxide nanocomposite for electrochemical sensing of methamphetamine. Sensors 23: 5519-5530 (2023).
  43. W. Khamcharoen; P. Rattanarat; O. Chailapakul. Recent Developments in Microfluidic Paper-based Analytical Devices for Pharmaceutical Analysis. Retirado em 20/05/2024, de http://www.eurekaselect.com.
  44. A.O. Simm; C.E. Banks; R.G. Compton. A comparison of different types of gold-carbon composite electrode for detection of arsenic(III). Anal. Bioanal. Chem. 381: 979-985 (2005).
  45. K. Tyszczuk-Rotko; M. Bęczkowska; I. Grabowska. First voltammetric analysis of two possible anticancer drug candidates using an unmodified glassy carbon electrode. Sci. Rep. 14: 17306-17316 (2024).
  46. D.A. Armbruster; T. Pry. Limit of Blank, Limit of Detection and Limit of Quantitation. Clin. Biochem. Rev. 29: S49-S52 (2008).
  47. P. Lakhera; M. Kumar; R. Kumar. Recent developments and fabrication of the different electrochemical biosensors based on modified screen printed and glassy carbon electrodes for the early diagnosis of diverse breast cancer biomarkers. Mater. Today Chem. 26: 101129-101140 (2022).

Creative Commons License

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Copyright (c) 2025 Revista Brasileira de Criminalística

Compartilhe

Download

Autor(es)