Fingerprint Research in Brazil (2020–2024): A Systematic Review of Trends, Technologies, and Institutional Collaborations


Abstract

This article presents a systematic review of Brazilian scientific output on fingerprint identification between 2020 and 2024. The objective is to analyze the thematic, methodological, and institutional evolution of national research, while situating it within global scientific trends. The search was conducted through the Web of Science database, following PRISMA guidelines, and resulted in the selection of 62 studies affiliated with Brazilian institutions. Data were thematically coded and graphically analyzed using Python tools. The findings reveal a strong concentration of studies on the development of chemical reagents for latent fingerprint visualization, particularly involving fluorescent materials, nanoparticles, and environmentally friendly compounds. While research involving artificial intelligence, spectrometry, and postmortem identification is emerging, most techniques remain at early validation stages. The Federal University of Pelotas, the University of Brasília, and the Brazilian Federal Police are the leading institutions in this field, reflecting the consolidation of interdisciplinary research networks. However, the majority of Brazilian studies are still in the initial phases of forensic research, according to IFRG standards. The review concludes that Brazil has a growing and thematically aligned research landscape, but further efforts are needed in statistical validation, real-world testing, and integration with automated biometric systems.


Literaturhinweise

  1. P. Hazarika; D.A. Russell Advances in fingerprint analysis. Angewandte Chemie International 51: 3524-3531 (2012).
  2. A. Bécue; C. Champod. Interpol review of fingermarks and other body impressions (2019–2022). Forensic Science International: Synergy 6: 100304 (2023).
  3. M.A. de Souza; J.C.C. Oliveira Neto Análise de Impressão Digital no Brasil: Uma Revisão Bibliométrica 2010-2019. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 10: 473-491 (2021).
  4. B. Kitcheham Procedures for performing Systematic Reviews, Keele University. Technical Report TR/SE-0401. Keele University, UK (2004).
  5. A. Liberati; D.G. Altman; J. Tetzlaff; C. Mulrow; P.C. Gøtzsche; J.P.A. Ioannidis; M. Clarke; P.J. Devereaux; J. Kleijnen; D. Moher. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration Bmj on line, 339 (2009).
  6. M. Staples; M. Niazi. Experiences using systematic review guidelines. J. of Systems and Software 80: 1425-1437 (2007).
  7. C.V. Costa, A. M. Assis, J. D. Freitas, J. Tonholo, & A.S. Ribeiro A low‐potential electrochemical method for fast development of latent fingerprints on brass cartridge cases by electrodeposition of poly (3, 4‐ethylenedioxythiophene). Nano Select 1: 405-412. (2020).
  8. C. V. Costa; L. I. Gama; N. O. Damasceno; A. M. Assis; W. M. Soares; R. C. Silva; A. S. Ribeiro. Bilayer systems based on conjugated polymers for fluorescence development of latent fingerprints on stainless steel. Synthetic Metals 262: 116347 (2020).
  9. H. L. Barros; L. Tavares; V. Stefani. Dye-doped starch microparticles as a novel fluorescent agent for the visualization of latent fingermarks on porous and non-porous substrates. Forensic Chemistry 20: 100264 (2020).
  10. E. G. Mazzini Junior; J. D. de Almeida Cantalice; A. M. L. de Assis; J. Duarte de Freitas; L. M. Manzine Costa; A. Santos Ribeiro. Fluorescent polymer nanofibers based on polycaprolactone and dansyl derivatives for development of latent fingerprints. Journal of Applied Polymer Science 137: 49804 (2020).
  11. B. N. D. Rosa; D. Venzke; T. Poletti; N. P. de Lima; J. T. Camacho; K. C. Mariotti; C. M. Pereira. Microwave assisted synthesis of thiocarbamoylpyrazoles and application as an alternative latent fingermark developers. Journal of the Brazilian Chemical Society 31: 1327–1331 (2020).
  12. G. F. Rodrigues; E. C. Aguiar. On the Ruhemann’s Purple electronic spectrum: the role of torsion angle and coordination with Zn(II). Journal of Molecular Modeling 26: 316 (2020).
  13. W. C. Macedo; A. G. B. Junior; K. de Oliveira Rocha; A. E. de Souza Albas; A. M. Pires; S. R. Teixeira; E. Longo. Photoluminescence of Eu3+-doped CaZrO3 red-emitting phosphors synthesized via microwave-assisted hydrothermal method. Materials Today Communications 24: 100966 (2020).
  14. B. M. Costa; D. V. Freitas; F. L. Sousa; K. D. Silva; J. M. Dias; A. M. Assis; M. Navarro. SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications. Dyes and Pigments 180: 108483 (2020).
  15. R. J. Accioly. A low-cost chemical and optical approach to develop latent fingermarks on silver mirror surfaces. Forensic Science International 327: 110988 (2021).
  16. E. Firmino; L. da Silva Oliveira; F. C. B. Martins; J. C. S. Filho; H. P. Barbosa; A. A. Andrade; J. L. Ferrari. Eu3+doped SiO2–Y2O3 containing Sr2+ for application as fingerprinting detector. Optical Materials 114: 111018 (2021).
  17. L. F. Passos; L. M. Berneira; T. Poletti; K. D. C. Mariotti; N. L. Carreño; C. A. Hartwig; C. M. Pereira. Evaluation and characterization of algal biomass applied to the development of fingermarks on glass surfaces. Australian Journal of Forensic Sciences 53: 337–346 (2021).
  18. A. C. F. de Lyra; L. P. da Silva; J. de Lima Neto; C. V. Costa; A. M. de Assis; J. D. de Freitas; A. S. Ribeiro. Functionalization of pyrrole derivatives as a way to improve their solubility in aqueous medium for applying in latent fingerprints development. Forensic Chemistry 26: 100373 (2021).
  19. B. S. Pacheco; C. C. Da Silva; B. N. Da Rosa; K. C. Mariotti; C. Nicolodi; T. Poletti; C. M. Pereira. Monofunctional curcumin analogues: evaluation of green and safe developers of latent fingerprints. Chemical Papers 75: 3119–3129 (2021).
  20. H. L. Barros; V. Stefani. Synthesis and photophysical behavior of fluorescent benzazole dyes and fluorescent microparticles: Their use as fingerprint developer. Journal of Photochemistry and Photobiology A: Chemistry 420: 113494 (2021).
  21. A. F Leitzke; L. M. Berneira; B. N. D. Rosa; B. C. Moreira; K. D. C. Mariotti; D. Venzke; C. M Pereira A Química de Produtos Naturais aplicados a reveladores de impressões digitais latentes. Química Nova 45: 424-434. (2022).
  22. R. M. Fiuza; C. Vesga-Hernández; J. Padilha; L. Maqueira; R. Q. Aucelio; J. Limberger. A styryl-benzothiadiazole derivative with aggregation-induced enhanced emission for latent fingerprint recognition. Journal of Luminescence 248: 118920 (2022).
  23. T. R. Machado, J. S. da Silva, R. R. Miranda, V. Zucolotto, M. S. Li, M. V. M. de Yuso, J. J. Guerrero-González, I. L. V. Rosa, M. Algarra, E. Longo. Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence. Chemical Engineering Journal 443: 136443 (2022).
  24. T. Poletti; L. M. Berneira; D. T. Bueno; C. C. da Silva; R. da Silva; C. M. Pereira. Chemical evaluation and application of cinnamaldehyde-derived curcumins as potential fingerprint development agents. Talanta Open 6: 100133 (2022).
  25. B. N. da Rosa, M. P. da Rosa, T. Poletti, N. P. K. de Lima, G. K. Maron, B. V. Lopes, K. de C. Mariotti, P. H. Beck, N. L. V. Carreno, C. M. P. de Pereira. Green composites from thiophene chalcones and rice husk lignin: an alternative of powder for latent fingermark. Surfaces 5: 481–488 (2022).
  26. N. P. Lima; B. N. Rosa; T. Poletti; B. C. Moreira; A. F. Leitzke; K. C. Mariotti; C. M. Pereira. Classic hydrazones as fingermark developers: an experimental organic chemistry proposal. Química Nova 46: 215–221 (2023).
  27. B. N. da Rosa; G. K. Maron; B. V. Lopes; A. C. S. Rocha; F. de Moura Gatti; J. O. A. Machado; C. M. P. Pereira. Dimethylaminochalcones with silicon dioxide and zinc oxide as latent fingermark developer powder. Materials Chemistry and Physics 295: 127033 (2023).
  28. R. M. Barros, O. S. Oliveira Neto, R. R. M. Barbosa, A. Tonietto, C. V. M. Jacintho, R. P. Del Sarto, M. A. Paulino. Using a large-scale cyanoacrylate fuming chamber for latent fingermark detection in vehicles. Australian Journal of Forensic Sciences 55: 645–655 (2023)
  29. E. M. de Oliveira; C. F. Reis; C. V. Dillenburg; B. J. Lobo; M. O. de Souza; N. M. Balzaretti; L. F. Campo. A magnetic and excited state intramolecular proton transfer fluorescent powder for latent fingermark visualization. Journal of Nanoparticle Research 26: 165 (2024).
  30. D. T. Bueno, A. F. Leitzke, R. L. Crizel, C. Jansen-Alves, E. G. Bertizzolo, J. P. Da Silva, G. Q. Sejanes, K. de C. Mariotti, C. M. P. De Pereira. Characterization of bixin by UV-visible spectroscopy and HPLC, and its application as latent fingermark developer. Analytica 5: 107–118 (2024).
  31. L. F. Oliveira; L. V. da Silva; A. F. Sonsin; M. S. Alves; C. V. Costa; J. C. Melo; A. S. Ribeiro. Dansyl fluorophore functionalized hierarchically structured mesoporous silica nanoparticles as novel latent fingerprint development agents. RSC Advances 14: 22504–22512 (2024).
  32. G. Martins; R. M. Barros; M. P. de Sousa; K. P. Frin; M. A. de Souza; L. G. Paterno. Fluorescent carbon dots for improved visualization of latent fingermarks after cyanoacrylate fuming. ACS Applied Nano Materials 7: 25891–25899 (2024).
  33. M. S. Alves; J. C. Melo; C. V. Costa; M. Ula; J. D. de Freitas; J. Tonholo; A. S. Ribeiro. Latent fingerprint enhancement by Ag nanoparticle electrodeposition on metal surfaces. Electrochimica Acta 484: 143925 (2024).
  34. A. F. Leitzke; D. T. Bueno; T. Poletti; G. K. Maron; B. V. Lopes; E. V. Morais; C. M. P. D. Pereira. The effectiveness of natural indigo/kaolinite composite powder in the development of latent fingermarks. Egyptian Journal of Forensic Sciences 14: 19 (2024).
  35. A. G. Medeiros, J. P. B. Andrade, P. B. S. Serafim, A. M. M. Santos, J. G. R. Maia, F. A. M. Trinta, J. A. F. de Macêdo, P. R. Filho, P. A. L. Rego. A novel approach for automatic enhancement of fingerprint images via deep transfer learning. Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN). 1–8 (2020).
  36. A. N. Cotrim, H. Pedrini. Multiscale approach in deep convolutional networks for minutia extraction from contactless fingerprint images. Proceedings of the 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI). 931–938 (2022).
  37. N. D. S. Cunha, H. M. Gomes, L. V. Batista. Residual M-net with frequency-domain loss function for latent fingerprint enhancement. Proceedings of the 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). 198–203 (2022)
  38. A. Nóbrega, I. Theodoro, P. Figueroa, A. Falcão. Improving local latent fingerprint representations under data constraints. Proceedings of the 2024 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). 1–6 (2024).
  39. M. E. Haertel; E. J. Linhares; A. L. de Melo. Smartphones for latent fingerprint processing and photography: A revolution in forensic science. Wiley Interdisciplinary Reviews: Forensic Science 3: e1410 (2021).
  40. P. Assumpção, C. Oliveira, W. Melo, L. Carmo. Sensors fingerprints using machine learning: a case study on dam monitoring systems. Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 1–6 (2022).
  41. G. H. de Rosa, M. Roder, J. P. Papa. Neighbour-based bag-of-samplings for person identification through handwritten dynamics and convolutional neural networks. Expert Systems 39: e12891 (2022).
  42. N. S. Girão, M. Muller, L. V. R. de Arruda. A new biometric identification system based on plantar pressure. IEEE Sensors Journal 23: 16900–16906 (2023).
  43. R. A. Barbosa, J. P. B. Andrade, M. R. C. Da Silva, F. A. M. Trinta, P. A. L. Rego. Accelerating fingerprint-based person identification through computation offloading in edge and cloud environments. Proceedings of the 2023 IEEE 12th International Conference on Cloud Networking (CloudNet). 153–160 (2023).
  44. R. M. Barros; C. C. Bonatto; M. H. Ramada; L. P. Silva. Surface-assisted laser desorption/ionization mass spectrometry analysis of latent fingermarks using greenly synthesized silver nanoparticles. Surfaces 6: 341–350 (2023).
  45. C. O. Goulart; C. C. Nascentes; L. M. Costa. The impact of lipid degradation on fingerprint quality on fired firearm cartridges. Journal of Forensic Sciences 68: 1713–1720 (2023).
  46. I. R. Müller; V. T. Grandi; S. G. Santos Paulino; B. D. Villa; B. M. Zembruski; C. M. Forcelini; S. R. Hahn; M. V. Antunes, R. Linden. Determination of carbamazepine in fingerprints: a feasibility study to evaluate adherence in epilepsy patients. Bioanalysis 16: 415–427 (2024).
  47. M. Gonzalez; N. A. dos Santos; C. M. de Almeida; R. S. Ortiz; R. P. Limberger; W. Romao; A. S. L. Mendez. Latent fingermarks analysis by imaging mass spectrometry. Current Analytical Chemistry 21: 1283-1293 (2024).
  48. F. M. Gomes; C. M. de Pereira; K. C. Mariotti; T. M. Pereira; N. A. dos Santos; H. S. Franca; W. Romao. Study of latent fingerprints and new developers by paper spray mass spectrometry (PS-MS). Química Nova 47: 1-11 (2024).
  49. M. González; K. C. Mariotti; A. Gomes; M. F. Ferrão; R. P. Limberger. Fingermark analysis by fourier transform infrared microscopy using chemometric tools. Brazilian Journal of Analytical Chemistry 8: 141–154 (2021).
  50. T. Poletti; L. M. Berneira; L. F. Passos; B. N. da Rosa; C. M. de Pereira; K. D. C. Mariotti. Preliminary efficiency evaluation of development methods applied to aged sebaceous latent fingermarks. Science & Justice 61: 378–383 (2021).
  51. C. R. Carneiro; C. S. Silva; I. T. Weber. A preliminary study of fingerprint aging using near infrared hyperspectral imaging (NIR-HSI). Analytical Methods 15: 6451–6459 (2023).
  52. M. A. Souza; A. S. Santos; S. W. D. Silva; J. W. B. Braga; M. H. Sousa. Diffuse Reflectance FTIR of Latent Fingerprints and Discriminant Analysis for Sex Identification in Humans. Journal of the Brazilian Chemical Society 34: 819–825 (2023).
  53. D. S. Carvalho; M. M. V. de Alecrim; R. T. de Sousa Júnior; L. A. R. Júnior. Outcome of sex determination from ulnar and radial ridge densities of Brazilians’ fingerprints: applying an existing method to a new population. Science & Justice 62: 181–192 (2022).
  54. M. A. Souza; A. S. Santos; S. W. da Silva; J. W. B. Braga; M. H. Sousa. Raman spectroscopy of fingerprints and chemometric analysis for forensic sex determination in humans. Forensic Chemistry 27: 100395 (2022).
  55. M. A. de Souza; G. D. O. Urtiaga; R. C. G. Ferreira; L. M. da Silva; J. K. G. Umbelino; F. R. de Melo; S. de Jesus. Friction ridge analysis in disaster victim identification (DVI): Brazilian case studies. Forensic Sciences Research 7: 323–329 (2022).
  56. T. S. Ferreira, K. de C. Mariotti, L. Alem. Postmortem fingerprint identification: A novel adaptive approach to the transillumination technique using moistened black volcano powder for fragile epidermal tissue. Journal of Forensic Sciences 70: 709–727 (2025).
  57. M. González; R. P. Gorziza; K. de Cássia Mariotti; R. Pereira Limberger. Methodologies applied to fingerprint analysis. Journal of Forensic Sciences 65: 1040–1048 (2020).
  58. R. G. Ferreira; R. B. A. Paula; A. A. Okuma; L. M. Costa Fingerprint Development Techniques: A Review Revista Virtual de Química 13: 1278-1302 (2021)
  59. M. O. Rodrigues, V. G. Isoppo, A. V. Moro, F. S. Rodembusch. Photoactive organic-inorganic hybrid materials: From silylated compounds to optical applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 51: 100474 (2022).
  60. A. M. L. Assis, C. V. Costa, M. S. Alves, J. C. S. Melo, V. R. de Oliveira, J. Tonholo, A. R. Hillman, A. S. Ribeiro. From nanomaterials to macromolecules: Innovative technologies for latent fingerprint development. Wiley Interdisciplinary Reviews: Forensic Science 5: e1475 (2023).
  61. K. de Cássia Mariotti; R. S. Ortiz; M. F. Ferrão. Hyperspectral imaging in forensic science: an overview of major application areas. Science & Justice 63: 387–395 (2023).
  62. F. M. Gomes, C. M. P. de Pereira, K. de C. Mariotti, T. M. Pereira, N. A. dos Santos, W. Romão. Study of latent fingerprints – a review. Forensic Chemistry 35: 100525, (2023).
  63. D. S. Carvalho; B. J. M. Lobo; A. O. da Silva; M. H. Sousa; S. W. da Silva. According to forensic science recommendations, are carbon dots capable of reliably developing latent fingerprints? Forensic Science International 365: 112291 (2024).
  64. C. M. de Almeida, N. A. Dos Santos, V. Lacerda Jr., X. Ma, F. M. Fernández, W. Romão. Applications of MALDI mass spectrometry in forensic science. Analytical and Bioanalytical Chemistry 416: 5255–5280 (2024).
  65. D. S. Carvalho; A. Magalhães Menon; A. C. Ribeiro de Toledo Pinto; L. Patrício Macedo. Comments on a large cyanoacrylate chamber for fingermark development. Australian Journal of Forensic Sciences 56: 106–109 (2024).
  66. R. B. Vieira, C. A. Vicentin Jr., T. L. C. Espicalsky, M. P. S. Machado, F. H. A. Santos, M. Calmon. Comparison of identification methods used in Forensic Anthropological services in four distinct institutes in Brazil and the United States. Australian Journal of Forensic Sciences 57: 600-620 (2024).
  67. T. Lópes, G. Sauzier, R. M. Barros, S. W. Lewis. Forensic science in the Global South: addressing Brazilian fingerprint experts’ challenges. Australian Journal of Forensic Sciences, 56: 52–54 (2024).
  68. G. Â. da Silva Gomes; L. P. M. de Oliveira; D. da Silva Carvalho; F. C. de Araújo Brito; R. Y. Matsushita. Standardizing fingerprint minutiae: a comprehensive inventory and statistical analysis based on Brazilian data. Forensic Science International 364: 112233 (2024).
  69. International Fingerprint Research Group Collaboration. Guidelines for the assessment of fingermark detection techniques. Journal of Forensic Identification 64: 174-200 (2014)

Creative-Commons-Lizenz
Dieses Werk steht unter der Lizenz Creative Commons Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen 4.0 International. Copyright (c) 2025 Brazilian Journal of Criminalistics

Teilen

Autor(en)