Investigación sobre Huellas Dactilares en Brasil (2020–2024): Una Revisión Sistemática de Tendencias, Tecnologías y Colaboraciones Institucionales.


Resumen

Aqui está a tradução para o espanhol do trecho solicitado:

Este artículo presenta una revisión sistemática de la producción científica brasileña sobre identificación por impresiones dactilares en el período de 2020 a 2024. El objetivo es analizar la evolución temática, metodológica e institucional de las investigaciones desarrolladas en el país, contextualizándolas en relación con las tendencias internacionales. La búsqueda se realizó en la base Web of Science, siguiendo los criterios PRISMA, y resultó en la selección de 62 estudios con afiliación institucional brasileña. Los datos fueron analizados mediante codificación temática y visualización gráfica utilizando Python. Los resultados indican que la mayoría de las investigaciones se concentran en el desarrollo de reactivos químicos para la visualización de impresiones latentes, con énfasis en materiales fluorescentes, nanopartículas y compuestos sostenibles. Aunque están surgiendo iniciativas que involucran inteligencia artificial, espectrometría y aplicaciones en identificación post mortem, se observa una limitación en la validación operativa de los métodos propuestos. La Universidade Federal de Pelotas, la Universidade de Brasília y la Policía Federal lideran la producción científica nacional en el tema, reflejando el fortalecimiento de redes institucionales interdisciplinarias. Sin embargo, la mayoría de los estudios aún se encuentran en las etapas iniciales de la investigación forense, conforme a las directrices del IFRG. Se concluye que Brasil posee una producción científica en crecimiento y alineada con las tendencias globales, pero que aún carece de inversiones en validación estadística, estudios aplicados e integración con sistemas biométricos automatizados.


Palabras clave

Fingerprints
Papiloscopy
Forensics
Analytical chemistry
Artificial Intelligence
Huellas dactilares
Dactiloscopia
Forense
Química analítica
Inteligencia artificial
Impressões digitais
Papiloscopia
Forense
Química Analítica
Inteligência Artificial

Citas

  1. P. Hazarika; D.A. Russell Advances in fingerprint analysis. Angewandte Chemie International 51: 3524-3531 (2012).
  2. A. Bécue; C. Champod. Interpol review of fingermarks and other body impressions (2019–2022). Forensic Science International: Synergy 6: 100304 (2023).
  3. M.A. de Souza; J.C.C. Oliveira Neto Análise de Impressão Digital no Brasil: Uma Revisão Bibliométrica 2010-2019. Brazilian Journal of Forensic Sciences, Medical Law and Bioethics, 10: 473-491 (2021).
  4. B. Kitcheham Procedures for performing Systematic Reviews, Keele University. Technical Report TR/SE-0401. Keele University, UK (2004).
  5. A. Liberati; D.G. Altman; J. Tetzlaff; C. Mulrow; P.C. Gøtzsche; J.P.A. Ioannidis; M. Clarke; P.J. Devereaux; J. Kleijnen; D. Moher. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate healthcare interventions: explanation and elaboration Bmj on line, 339 (2009).
  6. M. Staples; M. Niazi. Experiences using systematic review guidelines. J. of Systems and Software 80: 1425-1437 (2007).
  7. C.V. Costa, A. M. Assis, J. D. Freitas, J. Tonholo, & A.S. Ribeiro A low‐potential electrochemical method for fast development of latent fingerprints on brass cartridge cases by electrodeposition of poly (3, 4‐ethylenedioxythiophene). Nano Select 1: 405-412. (2020).
  8. C. V. Costa; L. I. Gama; N. O. Damasceno; A. M. Assis; W. M. Soares; R. C. Silva; A. S. Ribeiro. Bilayer systems based on conjugated polymers for fluorescence development of latent fingerprints on stainless steel. Synthetic Metals 262: 116347 (2020).
  9. H. L. Barros; L. Tavares; V. Stefani. Dye-doped starch microparticles as a novel fluorescent agent for the visualization of latent fingermarks on porous and non-porous substrates. Forensic Chemistry 20: 100264 (2020).
  10. E. G. Mazzini Junior; J. D. de Almeida Cantalice; A. M. L. de Assis; J. Duarte de Freitas; L. M. Manzine Costa; A. Santos Ribeiro. Fluorescent polymer nanofibers based on polycaprolactone and dansyl derivatives for development of latent fingerprints. Journal of Applied Polymer Science 137: 49804 (2020).
  11. B. N. D. Rosa; D. Venzke; T. Poletti; N. P. de Lima; J. T. Camacho; K. C. Mariotti; C. M. Pereira. Microwave assisted synthesis of thiocarbamoylpyrazoles and application as an alternative latent fingermark developers. Journal of the Brazilian Chemical Society 31: 1327–1331 (2020).
  12. G. F. Rodrigues; E. C. Aguiar. On the Ruhemann’s Purple electronic spectrum: the role of torsion angle and coordination with Zn(II). Journal of Molecular Modeling 26: 316 (2020).
  13. W. C. Macedo; A. G. B. Junior; K. de Oliveira Rocha; A. E. de Souza Albas; A. M. Pires; S. R. Teixeira; E. Longo. Photoluminescence of Eu3+-doped CaZrO3 red-emitting phosphors synthesized via microwave-assisted hydrothermal method. Materials Today Communications 24: 100966 (2020).
  14. B. M. Costa; D. V. Freitas; F. L. Sousa; K. D. Silva; J. M. Dias; A. M. Assis; M. Navarro. SATS@CdTe hierarchical structures emitting green to red colors developed for latent fingerprint applications. Dyes and Pigments 180: 108483 (2020).
  15. R. J. Accioly. A low-cost chemical and optical approach to develop latent fingermarks on silver mirror surfaces. Forensic Science International 327: 110988 (2021).
  16. E. Firmino; L. da Silva Oliveira; F. C. B. Martins; J. C. S. Filho; H. P. Barbosa; A. A. Andrade; J. L. Ferrari. Eu3+doped SiO2–Y2O3 containing Sr2+ for application as fingerprinting detector. Optical Materials 114: 111018 (2021).
  17. L. F. Passos; L. M. Berneira; T. Poletti; K. D. C. Mariotti; N. L. Carreño; C. A. Hartwig; C. M. Pereira. Evaluation and characterization of algal biomass applied to the development of fingermarks on glass surfaces. Australian Journal of Forensic Sciences 53: 337–346 (2021).
  18. A. C. F. de Lyra; L. P. da Silva; J. de Lima Neto; C. V. Costa; A. M. de Assis; J. D. de Freitas; A. S. Ribeiro. Functionalization of pyrrole derivatives as a way to improve their solubility in aqueous medium for applying in latent fingerprints development. Forensic Chemistry 26: 100373 (2021).
  19. B. S. Pacheco; C. C. Da Silva; B. N. Da Rosa; K. C. Mariotti; C. Nicolodi; T. Poletti; C. M. Pereira. Monofunctional curcumin analogues: evaluation of green and safe developers of latent fingerprints. Chemical Papers 75: 3119–3129 (2021).
  20. H. L. Barros; V. Stefani. Synthesis and photophysical behavior of fluorescent benzazole dyes and fluorescent microparticles: Their use as fingerprint developer. Journal of Photochemistry and Photobiology A: Chemistry 420: 113494 (2021).
  21. A. F Leitzke; L. M. Berneira; B. N. D. Rosa; B. C. Moreira; K. D. C. Mariotti; D. Venzke; C. M Pereira A Química de Produtos Naturais aplicados a reveladores de impressões digitais latentes. Química Nova 45: 424-434. (2022).
  22. R. M. Fiuza; C. Vesga-Hernández; J. Padilha; L. Maqueira; R. Q. Aucelio; J. Limberger. A styryl-benzothiadiazole derivative with aggregation-induced enhanced emission for latent fingerprint recognition. Journal of Luminescence 248: 118920 (2022).
  23. T. R. Machado, J. S. da Silva, R. R. Miranda, V. Zucolotto, M. S. Li, M. V. M. de Yuso, J. J. Guerrero-González, I. L. V. Rosa, M. Algarra, E. Longo. Amorphous calcium phosphate nanoparticles allow fingerprint detection via self-activated luminescence. Chemical Engineering Journal 443: 136443 (2022).
  24. T. Poletti; L. M. Berneira; D. T. Bueno; C. C. da Silva; R. da Silva; C. M. Pereira. Chemical evaluation and application of cinnamaldehyde-derived curcumins as potential fingerprint development agents. Talanta Open 6: 100133 (2022).
  25. B. N. da Rosa, M. P. da Rosa, T. Poletti, N. P. K. de Lima, G. K. Maron, B. V. Lopes, K. de C. Mariotti, P. H. Beck, N. L. V. Carreno, C. M. P. de Pereira. Green composites from thiophene chalcones and rice husk lignin: an alternative of powder for latent fingermark. Surfaces 5: 481–488 (2022).
  26. N. P. Lima; B. N. Rosa; T. Poletti; B. C. Moreira; A. F. Leitzke; K. C. Mariotti; C. M. Pereira. Classic hydrazones as fingermark developers: an experimental organic chemistry proposal. Química Nova 46: 215–221 (2023).
  27. B. N. da Rosa; G. K. Maron; B. V. Lopes; A. C. S. Rocha; F. de Moura Gatti; J. O. A. Machado; C. M. P. Pereira. Dimethylaminochalcones with silicon dioxide and zinc oxide as latent fingermark developer powder. Materials Chemistry and Physics 295: 127033 (2023).
  28. R. M. Barros, O. S. Oliveira Neto, R. R. M. Barbosa, A. Tonietto, C. V. M. Jacintho, R. P. Del Sarto, M. A. Paulino. Using a large-scale cyanoacrylate fuming chamber for latent fingermark detection in vehicles. Australian Journal of Forensic Sciences 55: 645–655 (2023)
  29. E. M. de Oliveira; C. F. Reis; C. V. Dillenburg; B. J. Lobo; M. O. de Souza; N. M. Balzaretti; L. F. Campo. A magnetic and excited state intramolecular proton transfer fluorescent powder for latent fingermark visualization. Journal of Nanoparticle Research 26: 165 (2024).
  30. D. T. Bueno, A. F. Leitzke, R. L. Crizel, C. Jansen-Alves, E. G. Bertizzolo, J. P. Da Silva, G. Q. Sejanes, K. de C. Mariotti, C. M. P. De Pereira. Characterization of bixin by UV-visible spectroscopy and HPLC, and its application as latent fingermark developer. Analytica 5: 107–118 (2024).
  31. L. F. Oliveira; L. V. da Silva; A. F. Sonsin; M. S. Alves; C. V. Costa; J. C. Melo; A. S. Ribeiro. Dansyl fluorophore functionalized hierarchically structured mesoporous silica nanoparticles as novel latent fingerprint development agents. RSC Advances 14: 22504–22512 (2024).
  32. G. Martins; R. M. Barros; M. P. de Sousa; K. P. Frin; M. A. de Souza; L. G. Paterno. Fluorescent carbon dots for improved visualization of latent fingermarks after cyanoacrylate fuming. ACS Applied Nano Materials 7: 25891–25899 (2024).
  33. M. S. Alves; J. C. Melo; C. V. Costa; M. Ula; J. D. de Freitas; J. Tonholo; A. S. Ribeiro. Latent fingerprint enhancement by Ag nanoparticle electrodeposition on metal surfaces. Electrochimica Acta 484: 143925 (2024).
  34. A. F. Leitzke; D. T. Bueno; T. Poletti; G. K. Maron; B. V. Lopes; E. V. Morais; C. M. P. D. Pereira. The effectiveness of natural indigo/kaolinite composite powder in the development of latent fingermarks. Egyptian Journal of Forensic Sciences 14: 19 (2024).
  35. A. G. Medeiros, J. P. B. Andrade, P. B. S. Serafim, A. M. M. Santos, J. G. R. Maia, F. A. M. Trinta, J. A. F. de Macêdo, P. R. Filho, P. A. L. Rego. A novel approach for automatic enhancement of fingerprint images via deep transfer learning. Proceedings of the 2020 International Joint Conference on Neural Networks (IJCNN). 1–8 (2020).
  36. A. N. Cotrim, H. Pedrini. Multiscale approach in deep convolutional networks for minutia extraction from contactless fingerprint images. Proceedings of the 2022 IEEE 34th International Conference on Tools with Artificial Intelligence (ICTAI). 931–938 (2022).
  37. N. D. S. Cunha, H. M. Gomes, L. V. Batista. Residual M-net with frequency-domain loss function for latent fingerprint enhancement. Proceedings of the 2022 35th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). 198–203 (2022)
  38. A. Nóbrega, I. Theodoro, P. Figueroa, A. Falcão. Improving local latent fingerprint representations under data constraints. Proceedings of the 2024 37th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI). 1–6 (2024).
  39. M. E. Haertel; E. J. Linhares; A. L. de Melo. Smartphones for latent fingerprint processing and photography: A revolution in forensic science. Wiley Interdisciplinary Reviews: Forensic Science 3: e1410 (2021).
  40. P. Assumpção, C. Oliveira, W. Melo, L. Carmo. Sensors fingerprints using machine learning: a case study on dam monitoring systems. Proceedings of the 2022 IEEE International Instrumentation and Measurement Technology Conference (I2MTC). 1–6 (2022).
  41. G. H. de Rosa, M. Roder, J. P. Papa. Neighbour-based bag-of-samplings for person identification through handwritten dynamics and convolutional neural networks. Expert Systems 39: e12891 (2022).
  42. N. S. Girão, M. Muller, L. V. R. de Arruda. A new biometric identification system based on plantar pressure. IEEE Sensors Journal 23: 16900–16906 (2023).
  43. R. A. Barbosa, J. P. B. Andrade, M. R. C. Da Silva, F. A. M. Trinta, P. A. L. Rego. Accelerating fingerprint-based person identification through computation offloading in edge and cloud environments. Proceedings of the 2023 IEEE 12th International Conference on Cloud Networking (CloudNet). 153–160 (2023).
  44. R. M. Barros; C. C. Bonatto; M. H. Ramada; L. P. Silva. Surface-assisted laser desorption/ionization mass spectrometry analysis of latent fingermarks using greenly synthesized silver nanoparticles. Surfaces 6: 341–350 (2023).
  45. C. O. Goulart; C. C. Nascentes; L. M. Costa. The impact of lipid degradation on fingerprint quality on fired firearm cartridges. Journal of Forensic Sciences 68: 1713–1720 (2023).
  46. I. R. Müller; V. T. Grandi; S. G. Santos Paulino; B. D. Villa; B. M. Zembruski; C. M. Forcelini; S. R. Hahn; M. V. Antunes, R. Linden. Determination of carbamazepine in fingerprints: a feasibility study to evaluate adherence in epilepsy patients. Bioanalysis 16: 415–427 (2024).
  47. M. Gonzalez; N. A. dos Santos; C. M. de Almeida; R. S. Ortiz; R. P. Limberger; W. Romao; A. S. L. Mendez. Latent fingermarks analysis by imaging mass spectrometry. Current Analytical Chemistry 21: 1283-1293 (2024).
  48. F. M. Gomes; C. M. de Pereira; K. C. Mariotti; T. M. Pereira; N. A. dos Santos; H. S. Franca; W. Romao. Study of latent fingerprints and new developers by paper spray mass spectrometry (PS-MS). Química Nova 47: 1-11 (2024).
  49. M. González; K. C. Mariotti; A. Gomes; M. F. Ferrão; R. P. Limberger. Fingermark analysis by fourier transform infrared microscopy using chemometric tools. Brazilian Journal of Analytical Chemistry 8: 141–154 (2021).
  50. T. Poletti; L. M. Berneira; L. F. Passos; B. N. da Rosa; C. M. de Pereira; K. D. C. Mariotti. Preliminary efficiency evaluation of development methods applied to aged sebaceous latent fingermarks. Science & Justice 61: 378–383 (2021).
  51. C. R. Carneiro; C. S. Silva; I. T. Weber. A preliminary study of fingerprint aging using near infrared hyperspectral imaging (NIR-HSI). Analytical Methods 15: 6451–6459 (2023).
  52. M. A. Souza; A. S. Santos; S. W. D. Silva; J. W. B. Braga; M. H. Sousa. Diffuse Reflectance FTIR of Latent Fingerprints and Discriminant Analysis for Sex Identification in Humans. Journal of the Brazilian Chemical Society 34: 819–825 (2023).
  53. D. S. Carvalho; M. M. V. de Alecrim; R. T. de Sousa Júnior; L. A. R. Júnior. Outcome of sex determination from ulnar and radial ridge densities of Brazilians’ fingerprints: applying an existing method to a new population. Science & Justice 62: 181–192 (2022).
  54. M. A. Souza; A. S. Santos; S. W. da Silva; J. W. B. Braga; M. H. Sousa. Raman spectroscopy of fingerprints and chemometric analysis for forensic sex determination in humans. Forensic Chemistry 27: 100395 (2022).
  55. M. A. de Souza; G. D. O. Urtiaga; R. C. G. Ferreira; L. M. da Silva; J. K. G. Umbelino; F. R. de Melo; S. de Jesus. Friction ridge analysis in disaster victim identification (DVI): Brazilian case studies. Forensic Sciences Research 7: 323–329 (2022).
  56. T. S. Ferreira, K. de C. Mariotti, L. Alem. Postmortem fingerprint identification: A novel adaptive approach to the transillumination technique using moistened black volcano powder for fragile epidermal tissue. Journal of Forensic Sciences 70: 709–727 (2025).
  57. M. González; R. P. Gorziza; K. de Cássia Mariotti; R. Pereira Limberger. Methodologies applied to fingerprint analysis. Journal of Forensic Sciences 65: 1040–1048 (2020).
  58. R. G. Ferreira; R. B. A. Paula; A. A. Okuma; L. M. Costa Fingerprint Development Techniques: A Review Revista Virtual de Química 13: 1278-1302 (2021)
  59. M. O. Rodrigues, V. G. Isoppo, A. V. Moro, F. S. Rodembusch. Photoactive organic-inorganic hybrid materials: From silylated compounds to optical applications. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 51: 100474 (2022).
  60. A. M. L. Assis, C. V. Costa, M. S. Alves, J. C. S. Melo, V. R. de Oliveira, J. Tonholo, A. R. Hillman, A. S. Ribeiro. From nanomaterials to macromolecules: Innovative technologies for latent fingerprint development. Wiley Interdisciplinary Reviews: Forensic Science 5: e1475 (2023).
  61. K. de Cássia Mariotti; R. S. Ortiz; M. F. Ferrão. Hyperspectral imaging in forensic science: an overview of major application areas. Science & Justice 63: 387–395 (2023).
  62. F. M. Gomes, C. M. P. de Pereira, K. de C. Mariotti, T. M. Pereira, N. A. dos Santos, W. Romão. Study of latent fingerprints – a review. Forensic Chemistry 35: 100525, (2023).
  63. D. S. Carvalho; B. J. M. Lobo; A. O. da Silva; M. H. Sousa; S. W. da Silva. According to forensic science recommendations, are carbon dots capable of reliably developing latent fingerprints? Forensic Science International 365: 112291 (2024).
  64. C. M. de Almeida, N. A. Dos Santos, V. Lacerda Jr., X. Ma, F. M. Fernández, W. Romão. Applications of MALDI mass spectrometry in forensic science. Analytical and Bioanalytical Chemistry 416: 5255–5280 (2024).
  65. D. S. Carvalho; A. Magalhães Menon; A. C. Ribeiro de Toledo Pinto; L. Patrício Macedo. Comments on a large cyanoacrylate chamber for fingermark development. Australian Journal of Forensic Sciences 56: 106–109 (2024).
  66. R. B. Vieira, C. A. Vicentin Jr., T. L. C. Espicalsky, M. P. S. Machado, F. H. A. Santos, M. Calmon. Comparison of identification methods used in Forensic Anthropological services in four distinct institutes in Brazil and the United States. Australian Journal of Forensic Sciences 57: 600-620 (2024).
  67. T. Lópes, G. Sauzier, R. M. Barros, S. W. Lewis. Forensic science in the Global South: addressing Brazilian fingerprint experts’ challenges. Australian Journal of Forensic Sciences, 56: 52–54 (2024).
  68. G. Â. da Silva Gomes; L. P. M. de Oliveira; D. da Silva Carvalho; F. C. de Araújo Brito; R. Y. Matsushita. Standardizing fingerprint minutiae: a comprehensive inventory and statistical analysis based on Brazilian data. Forensic Science International 364: 112233 (2024).
  69. International Fingerprint Research Group Collaboration. Guidelines for the assessment of fingermark detection techniques. Journal of Forensic Identification 64: 174-200 (2014)

Creative Commons License

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.

Derechos de autor 2025 Brazilian Journal of Criminalistics

Compartir

Autor(es)